--- license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer datasets: - common_voice_18_0 metrics: - wer model-index: - name: whisper-large-v3-pt-3000h-3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_18_0 type: common_voice_18_0 config: pt split: None args: pt metrics: - name: Wer type: wer value: 0.10366752081998719 --- # whisper-large-v3-pt-3000h-3 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the common_voice_18_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1486 - Wer: 0.1037 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 2.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.13 | 0.9998 | 691 | 0.1486 | 0.1037 | ### Framework versions - Transformers 4.44.0.dev0 - Pytorch 2.4.0+cu124 - Datasets 2.18.1.dev0 - Tokenizers 0.19.1