--- pipeline_tag: token-classification datasets: - conll2003 metrics: - precision - recall - f1 - accuracy tags: - distilbert --- **task**: `token-classification` **Backend:** `sagemaker-training` **Backend args:** `{'instance_type': 'ml.g4dn.2xlarge', 'supported_instructions': 'avx512_vnni'}` **Number of evaluation samples:** `1000` Fixed parameters: * **model_name_or_path**: `elastic/distilbert-base-uncased-finetuned-conll03-english` * **dataset**: * **path**: `conll2003` * **eval_split**: `validation` * **data_keys**: `{'primary': 'tokens'}` * **ref_keys**: `['ner_tags']` * **calibration_split**: `train` * **node_exclusion**: `[]` * **per_channel**: `False` * **calibration**: * **method**: `minmax` * **num_calibration_samples**: `100` * **framework**: `onnxruntime` * **framework_args**: * **opset**: `11` * **optimization_level**: `1` * **aware_training**: `False` Benchmarked parameters: * **quantization_approach**: `dynamic`, `static` * **operators_to_quantize**: `['Add', 'MatMul']`, `['Add']` # Evaluation ## Non-time metrics | quantization_approach | operators_to_quantize | | precision (original) | precision (optimized) | | recall (original) | recall (optimized) | | f1 (original) | f1 (optimized) | | accuracy (original) | accuracy (optimized) | | :-------------------: | :-------------------: | :-: | :------------------: | :-------------------: | :-: | :---------------: | :----------------: | :-: | :-----------: | :------------: | :-: | :-----------------: | :------------------: | | `dynamic` | `['Add', 'MatMul']` | \| | 0.937 | 0.937 | \| | 0.953 | 0.953 | \| | 0.945 | 0.945 | \| | 0.988 | 0.988 | | `dynamic` | `['Add']` | \| | 0.937 | 0.937 | \| | 0.953 | 0.953 | \| | 0.945 | 0.945 | \| | 0.988 | 0.988 | | `static` | `['Add', 'MatMul']` | \| | 0.937 | 0.074 | \| | 0.953 | 0.253 | \| | 0.945 | 0.114 | \| | 0.988 | 0.363 | | `static` | `['Add']` | \| | 0.937 | 0.065 | \| | 0.953 | 0.186 | \| | 0.945 | 0.096 | \| | 0.988 | 0.340 | ## Time metrics Time benchmarks were run for 3 seconds per config. Below, time metrics for batch size = 1, input length = 64. | quantization_approach | operators_to_quantize | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :-------------------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `dynamic` | `['Add', 'MatMul']` | \| | 57.64 | 12.30 | \| | 17.67 | 81.33 | | `dynamic` | `['Add']` | \| | 43.51 | 29.42 | \| | 23.00 | 34.00 | | `static` | `['Add', 'MatMul']` | \| | 43.05 | 21.11 | \| | 23.33 | 47.67 | | `static` | `['Add']` | \| | 43.50 | 37.93 | \| | 23.00 | 26.67 | Below, time metrics for batch size = 4, input length = 64. | quantization_approach | operators_to_quantize | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :-------------------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `dynamic` | `['Add', 'MatMul']` | \| | 119.50 | 39.92 | \| | 8.67 | 25.33 | | `dynamic` | `['Add']` | \| | 119.62 | 107.42 | \| | 8.67 | 9.33 | | `static` | `['Add', 'MatMul']` | \| | 120.23 | 56.94 | \| | 8.33 | 17.67 | | `static` | `['Add']` | \| | 119.10 | 130.78 | \| | 8.67 | 7.67 | Below, time metrics for batch size = 8, input length = 64. | quantization_approach | operators_to_quantize | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :-------------------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `dynamic` | `['Add', 'MatMul']` | \| | 165.84 | 75.45 | \| | 6.33 | 13.33 | | `dynamic` | `['Add']` | \| | 214.65 | 211.41 | \| | 4.67 | 5.00 | | `static` | `['Add', 'MatMul']` | \| | 166.53 | 129.00 | \| | 6.33 | 8.00 | | `static` | `['Add']` | \| | 214.81 | 256.95 | \| | 4.67 | 4.00 |