File size: 1,635 Bytes
d5ee4ac
999d128
cc242f2
d5ee4ac
 
999d128
 
d5ee4ac
 
 
 
 
 
 
 
 
 
999d128
 
cc242f2
 
d5ee4ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38a33e7
40ac54a
 
d5ee4ac
 
 
38a33e7
d5ee4ac
999d128
 
 
 
cc242f2
 
 
 
 
999d128
 
d5ee4ac
 
cc242f2
d5ee4ac
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
license: mit
base_model: microsoft/MiniLM-L12-H384-uncased
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: Greg-Sentiment-classifier
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Greg-Sentiment-classifier

This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8368
- F1: 0.6564

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.9048        | 0.5   | 500  | 0.8963          | 0.6318 |
| 0.8732        | 1.0   | 1000 | 0.8611          | 0.6437 |
| 0.8592        | 1.5   | 1500 | 0.9093          | 0.6486 |
| 0.8314        | 2.01  | 2000 | 0.8242          | 0.6542 |
| 0.8114        | 2.51  | 2500 | 0.8368          | 0.6564 |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3