ppo-LunarLander-v2 / config.json
gRaphael's picture
Upload PPO LunarLander-v2 trained agent
f9d677e
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbe95a743a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbe95a74430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbe95a744c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbe95a74550>", "_build": "<function ActorCriticPolicy._build at 0x7fbe95a745e0>", "forward": "<function ActorCriticPolicy.forward at 0x7fbe95a74670>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fbe95a74700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbe95a74790>", "_predict": "<function ActorCriticPolicy._predict at 0x7fbe95a74820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbe95a748b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbe95a74940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbe95a749d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fbe95a73e00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682517413455655218, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8656wLxwb0CUhpRSlIwBbJRNsAGMAXSUR0CdKrr7fpEAdX2UKGgGaAloD0MIVyb8Ur9+YUCUhpRSlGgVTegDaBZHQJ0tXpMYdhl1fZQoaAZoCWgPQwg6P8Vx4GNlQJSGlFKUaBVN6ANoFkdAnS3en/DLsHV9lChoBmgJaA9DCGN8mL1sKXFAlIaUUpRoFU1OA2gWR0CdLwoJAt4BdX2UKGgGaAloD0MIAma+g58gI8CUhpRSlGgVTTcBaBZHQJ0vJUipvP11fZQoaAZoCWgPQwjJchJK3/puQJSGlFKUaBVNCQJoFkdAnUJf07KaHHV9lChoBmgJaA9DCD3RdeGHUmFAlIaUUpRoFU3oA2gWR0CdQ8egte2NdX2UKGgGaAloD0MIp804DdHcZECUhpRSlGgVTegDaBZHQJ1FcHgP3BZ1fZQoaAZoCWgPQwihaYmVUW5qQJSGlFKUaBVNoQJoFkdAnUqynpB5X3V9lChoBmgJaA9DCL39uWhImW1AlIaUUpRoFU2kAWgWR0CdSyajesPrdX2UKGgGaAloD0MIy9qmeNwYbkCUhpRSlGgVTUoCaBZHQJ1LrJNj9XN1fZQoaAZoCWgPQwh3L/fJUWxjQJSGlFKUaBVN6ANoFkdAnUuu4wyqMnV9lChoBmgJaA9DCNZUFoVdo1tAlIaUUpRoFU3oA2gWR0CdVbBnSOR1dX2UKGgGaAloD0MIYw0XuSddcECUhpRSlGgVTZIBaBZHQJ1WC3qiXY11fZQoaAZoCWgPQwgt6L0xhItiQJSGlFKUaBVN6ANoFkdAnVbuvUz9CXV9lChoBmgJaA9DCEDfFixVO25AlIaUUpRoFU2oAWgWR0CdVwpfhMrVdX2UKGgGaAloD0MI86ykFR+xcECUhpRSlGgVTYUCaBZHQJ1X0mois4l1fZQoaAZoCWgPQwgqb0c4LYtwQJSGlFKUaBVN9gFoFkdAnVkAl4TsY3V9lChoBmgJaA9DCHFXryIjx2xAlIaUUpRoFU2WAWgWR0CdWyvlEJBxdX2UKGgGaAloD0MIxmzJqogMa0CUhpRSlGgVTdABaBZHQJ1h6UA1ejV1fZQoaAZoCWgPQwiuvOR/sjhwQJSGlFKUaBVNcwNoFkdAnWg0iILw4XV9lChoBmgJaA9DCPZiKCda0GpAlIaUUpRoFU3LAWgWR0CdaQBHCoCNdX2UKGgGaAloD0MI/FOqRFl9bkCUhpRSlGgVTTcCaBZHQJ1vZLDhtLt1fZQoaAZoCWgPQwjx8QnZ+f5qQJSGlFKUaBVN3QJoFkdAnXAbYTTOPnV9lChoBmgJaA9DCOLLRBHS021AlIaUUpRoFU2OAWgWR0CdcMcgyM1kdX2UKGgGaAloD0MI4Zumz45GbECUhpRSlGgVTQ0CaBZHQJ11beDWbw11fZQoaAZoCWgPQwgg8SvWcP5sQJSGlFKUaBVNEQJoFkdAnXaVf3N9pnV9lChoBmgJaA9DCGJlNPL5dGBAlIaUUpRoFU3oA2gWR0Cdewpo9LYgdX2UKGgGaAloD0MIsRU0LbHeYUCUhpRSlGgVTegDaBZHQJ17KjGkvbp1fZQoaAZoCWgPQwih2Aqa1idwQJSGlFKUaBVNIgNoFkdAnXx4KtxMnXV9lChoBmgJaA9DCKMjufyHVmxAlIaUUpRoFU0cA2gWR0CdfPoS+QEIdX2UKGgGaAloD0MIOGdEae+IbUCUhpRSlGgVTWACaBZHQJ2SdnFo+Oh1fZQoaAZoCWgPQwh3LSEf9AltQJSGlFKUaBVNkwFoFkdAnZT16eGwinV9lChoBmgJaA9DCKQzMPKywm1AlIaUUpRoFU2wAWgWR0Cdlgl5GBnSdX2UKGgGaAloD0MIoE55dCM5bkCUhpRSlGgVTRIDaBZHQJ2YyCDmKZV1fZQoaAZoCWgPQwhA3UCBd3ZvQJSGlFKUaBVNYQJoFkdAnZkduP3i73V9lChoBmgJaA9DCJvHYTA/dXBAlIaUUpRoFU15AWgWR0CdmSXBguyvdX2UKGgGaAloD0MIIc7DCUw0akCUhpRSlGgVTSADaBZHQJ2ZvwG4ZuR1fZQoaAZoCWgPQwiuYYbGk0txQJSGlFKUaBVNmgFoFkdAnZq3/T9bYHV9lChoBmgJaA9DCNRi8DBtvnBAlIaUUpRoFU0BAmgWR0CdnkGUfPondX2UKGgGaAloD0MIrfawF4rSYUCUhpRSlGgVTegDaBZHQJ2iPRIBikR1fZQoaAZoCWgPQwi2n4zxYRRwQJSGlFKUaBVNFAJoFkdAnadRnSOR1XV9lChoBmgJaA9DCD874Lpii3FAlIaUUpRoFU2VAWgWR0CdqFhbW3BpdX2UKGgGaAloD0MIqrUwC+2eb0CUhpRSlGgVTeUBaBZHQJ2pT5O8Cgd1fZQoaAZoCWgPQwjo3sMlR7BqQJSGlFKUaBVNWQJoFkdAnaok1hsqKHV9lChoBmgJaA9DCMakv5fCNGpAlIaUUpRoFU2GAWgWR0Cdqn91loUSdX2UKGgGaAloD0MI0csoltvWbECUhpRSlGgVTeYBaBZHQJ2rJSl3yI51fZQoaAZoCWgPQwg1mlyMgfxwQJSGlFKUaBVNqQFoFkdAnatbTYukDnV9lChoBmgJaA9DCBh5WRML8m5AlIaUUpRoFU0IAmgWR0CdrA2pAD7qdX2UKGgGaAloD0MIVFInoInWcUCUhpRSlGgVTYwBaBZHQJ2uIc0cfeV1fZQoaAZoCWgPQwghA3l2eb1vQJSGlFKUaBVNrAFoFkdAna6yOJcgQ3V9lChoBmgJaA9DCFHB4QXRMnJAlIaUUpRoFU2yAWgWR0Cdrvah6By0dX2UKGgGaAloD0MIzt2ul6afbUCUhpRSlGgVTZkBaBZHQJ2vpBlcyFh1fZQoaAZoCWgPQwhM/FHUGcRxQJSGlFKUaBVNqAFoFkdAnbNNzKcNIHV9lChoBmgJaA9DCMrd5/hoZmpAlIaUUpRoFU13AWgWR0CdtBea8YhudX2UKGgGaAloD0MI/7J78rBQ+T+UhpRSlGgVTTsBaBZHQJ22JWJaaCt1fZQoaAZoCWgPQwj7PhwkxFNxQJSGlFKUaBVNJQNoFkdAnbZN/z8P4HV9lChoBmgJaA9DCJboLLOIMm5AlIaUUpRoFU1pAWgWR0Cdt4vRJEpidX2UKGgGaAloD0MIBp/m5EWEbECUhpRSlGgVTXMBaBZHQJ26oKBun/F1fZQoaAZoCWgPQwivJHmub2ZwQJSGlFKUaBVNYAFoFkdAnbrSFoL5RHV9lChoBmgJaA9DCOoJSzwgLG1AlIaUUpRoFU2RAWgWR0Cdu1vicXnAdX2UKGgGaAloD0MI6uqOxbanbUCUhpRSlGgVTdEBaBZHQJ27uNGViWp1fZQoaAZoCWgPQwiduByvQLVvQJSGlFKUaBVNlAFoFkdAnbxElAu7H3V9lChoBmgJaA9DCM08uabAj2pAlIaUUpRoFU2EA2gWR0Cd2OKZ2IO6dX2UKGgGaAloD0MIFmu4yL0mbkCUhpRSlGgVTe4BaBZHQJ3ZsEdNnGt1fZQoaAZoCWgPQwjVeVT8X75uQJSGlFKUaBVN3AFoFkdAndnWqxTsIHV9lChoBmgJaA9DCM+HZwmy329AlIaUUpRoFU2VAWgWR0Cd29/5ckdFdX2UKGgGaAloD0MIpwhwehc3cUCUhpRSlGgVTfcBaBZHQJ3b+GtZFG51fZQoaAZoCWgPQwjd0mpIXFNtQJSGlFKUaBVNaQFoFkdAndy23nZCfHV9lChoBmgJaA9DCLlPjgJE/m5AlIaUUpRoFU05AmgWR0Cd3Z1baAWjdX2UKGgGaAloD0MIr5gR3p75b0CUhpRSlGgVTY4BaBZHQJ3eW79Q40d1fZQoaAZoCWgPQwgLthFPdgVtQJSGlFKUaBVNhgFoFkdAnd8fD1oQF3V9lChoBmgJaA9DCF9GsdzSI3BAlIaUUpRoFU39AWgWR0Cd4MfTTfBOdX2UKGgGaAloD0MIbLQc6KGzbECUhpRSlGgVTYMBaBZHQJ3iksAeaKF1fZQoaAZoCWgPQwilv5fCA29tQJSGlFKUaBVNmAFoFkdAneQH5BTn73V9lChoBmgJaA9DCM+9h0uOsHBAlIaUUpRoFU2vAWgWR0Cd5BIcinpCdX2UKGgGaAloD0MIUcB2MGJrcECUhpRSlGgVTb8BaBZHQJ3kNgPVd5Z1fZQoaAZoCWgPQwj44ov2eP07QJSGlFKUaBVNMwFoFkdAneY48EFGG3V9lChoBmgJaA9DCCzVBbzMg25AlIaUUpRoFU1/AWgWR0Cd6R0z0pVkdX2UKGgGaAloD0MIyo0ia40KYkCUhpRSlGgVTegDaBZHQJ3qGGh24d91fZQoaAZoCWgPQwi2uwfovmFwQJSGlFKUaBVNbwFoFkdAnep5fx+a0HV9lChoBmgJaA9DCN19jo9WLXFAlIaUUpRoFU1+AWgWR0Cd67z/p+tsdX2UKGgGaAloD0MICaaaWUvRb0CUhpRSlGgVTaABaBZHQJ3sQ2P1ct51fZQoaAZoCWgPQwihaB7AIspvQJSGlFKUaBVNiAFoFkdAne2mqDK5kXV9lChoBmgJaA9DCGA97lstNG9AlIaUUpRoFU2kAWgWR0Cd76zOX3QEdX2UKGgGaAloD0MImdcRh+zjb0CUhpRSlGgVTUcBaBZHQJ3z3QF9roJ1fZQoaAZoCWgPQwgnZr0YyjBvQJSGlFKUaBVNKwJoFkdAnfRCWRigCnV9lChoBmgJaA9DCMi3dw36u29AlIaUUpRoFU3pAWgWR0Cd9vlsguAadX2UKGgGaAloD0MIkiQIV0DPRECUhpRSlGgVTTQBaBZHQJ33toYekpJ1fZQoaAZoCWgPQwjPEfkupT9uQJSGlFKUaBVNJAJoFkdAnffQUQCjlHV9lChoBmgJaA9DCEW3XtOD5W1AlIaUUpRoFU3cAWgWR0Cd+C5gPVd5dX2UKGgGaAloD0MIcEBLVzB7YkCUhpRSlGgVTegDaBZHQJ38WjqOcUd1fZQoaAZoCWgPQwgoZVJD2wVyQJSGlFKUaBVNLAJoFkdAnfx97BwdbXV9lChoBmgJaA9DCK5mnfG9bnBAlIaUUpRoFU3JAWgWR0Cd/rEiMYMwdX2UKGgGaAloD0MIqmOV0jPBb0CUhpRSlGgVTZ4BaBZHQJ4A9fAsTWZ1fZQoaAZoCWgPQwhkraHU3gBwQJSGlFKUaBVN0wFoFkdAngFRBmf5DnV9lChoBmgJaA9DCInsgyyLkGxAlIaUUpRoFU2/AWgWR0CeBYRpDeCTdX2UKGgGaAloD0MI2PULdsMocECUhpRSlGgVTZABaBZHQJ4FiZqmCRR1fZQoaAZoCWgPQwjBN02fnQ1lQJSGlFKUaBVN6ANoFkdAnggDCpFTenV9lChoBmgJaA9DCPwbtFcf43FAlIaUUpRoFU1kAWgWR0CeCKBtUGVzdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 256, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}