gaarsmu commited on
Commit
b351dba
·
1 Parent(s): 449e28b

PPO_default

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO_default
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 250.35 +/- 20.49
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO_default** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO_default** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
Unit1_model1_default.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:924c32a3dc8db79bf9e47cc776d876dc43fb11df4e3cfefb726e605fb54b5c9f
3
+ size 147198
Unit1_model1_default/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
Unit1_model1_default/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8998a3d0d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8998a3d160>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8998a3d1f0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8998a3d280>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f8998a3d310>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f8998a3d3a0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8998a3d430>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f8998a3d4c0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8998a3d550>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8998a3d5e0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8998a3d670>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f8998a3a2d0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1672971366094663161,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALO/Rb3S1O67wEGxPLCrHj3aike9bi4BPgAAgD8AAIA/wDqDvYN+BrwqSX87yrCcPBmFar1XKII9AACAPwAAgD/G7Q6+PZ9+u53xwbXRTQKzAueqPPKrBzUAAIA/AACAP4D6xD1cQZU+utMrvmqdgb5nJbc8CFScPQAAAAAAAAAAZqb+O65LibqydJq8RqucPO2cfzuJ9Ia9AACAPwAAgD8mopG+0bFAvfmWGTqjXgU5mWqlPsO2T7kAAIA/AACAP+Z+9j0EQLo+C1ODvhU8lL6VO1O8ilsqvAAAAAAAAAAAzVQMvRJoPz64wDG9BOKCvomkkzxKqJc7AAAAAAAAAADA58K9rvn1ukj1Ib0T9os83UIYPAYYcr0AAAAAAACAP80v5D1PiBs9qdW7vXDlL74/ih8942RdvQAAAAAAAAAAQNmUPdI9kruUHY69bxwHvAOM4ry4kOa8AACAPwAAgD/A1rg9/dZqPmpcE75+bke+uriBPPpLQL0AAAAAAAAAAGZypr1s6OU+Td83PX7Prr5f5Wo9s22ROwAAAAAAAAAAaM+cvuEnez/+fea9+oIBv+rskL6yRGO8AAAAAAAAAACam+Y8KQRGusBKXztexI88njoqO+6Oer0AAIA/AACAPw0Z9734PII+5rBzPtBubL7vJr08BZfQPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/67PnPW+bECUhpRSlIwBbJRNJgGMAXSUR0CWPlfT1CgLdX2UKGgGaAloD0MIjIF1HH+WcECUhpRSlGgVTSIBaBZHQJY+23azu4R1fZQoaAZoCWgPQwipaRfTDCtxQJSGlFKUaBVNCwFoFkdAlj+QsCkoF3V9lChoBmgJaA9DCFtc4zNZgHBAlIaUUpRoFU1DAWgWR0CWP9ApazNVdX2UKGgGaAloD0MI8WJhiBw0c0CUhpRSlGgVTU8BaBZHQJZABRXOnl51fZQoaAZoCWgPQwi/J9apcpJwQJSGlFKUaBVNMQFoFkdAlkB0KiO/+XV9lChoBmgJaA9DCD4hO2/jmnJAlIaUUpRoFUv6aBZHQJZBACW/rSp1fZQoaAZoCWgPQwjVWS2wB7ByQJSGlFKUaBVNBQFoFkdAlkG3yqdYn3V9lChoBmgJaA9DCOTbuwa9ZHFAlIaUUpRoFU0jAWgWR0CWQg7vG6wudX2UKGgGaAloD0MIzsEzockackCUhpRSlGgVTSMBaBZHQJZCDd0q6OJ1fZQoaAZoCWgPQwh3oiQk0oJyQJSGlFKUaBVNKQFoFkdAlkJMUmD15HV9lChoBmgJaA9DCGMoJ9qV2XBAlIaUUpRoFU0UAWgWR0CWQ2n+hoM8dX2UKGgGaAloD0MIRzmYTQDqbkCUhpRSlGgVTSIBaBZHQJZDw6xPfsN1fZQoaAZoCWgPQwg/i6VIftFxQJSGlFKUaBVNBQFoFkdAlkY2Ts6aLHV9lChoBmgJaA9DCPn1Q2xwdHJAlIaUUpRoFU0eAWgWR0CWSCjPfKp2dX2UKGgGaAloD0MI/1iIDgFDcECUhpRSlGgVTQYBaBZHQJZIiEDhcZ91fZQoaAZoCWgPQwit3uF2aKBvQJSGlFKUaBVNDwFoFkdAlkifzJ6ppHV9lChoBmgJaA9DCOhrlsuGcXFAlIaUUpRoFU08AWgWR0CWSMMaS9uhdX2UKGgGaAloD0MIfuGVJI8ocUCUhpRSlGgVTUwBaBZHQJZI+LNwBHV1fZQoaAZoCWgPQwiL/WX35GRwQJSGlFKUaBVL+WgWR0CWSTUtZmqYdX2UKGgGaAloD0MIesVTj3RkcUCUhpRSlGgVS/BoFkdAlkoNPk7wKHV9lChoBmgJaA9DCBFV+DP8wHFAlIaUUpRoFU00AWgWR0CWSpki2UjcdX2UKGgGaAloD0MInPwWney0cUCUhpRSlGgVTR8BaBZHQJZLSJSBK+V1fZQoaAZoCWgPQwgSEmkb/9JuQJSGlFKUaBVNbQFoFkdAlkuddNWU8nV9lChoBmgJaA9DCJZbWg2JQXFAlIaUUpRoFU04AWgWR0CWTMltj0+UdX2UKGgGaAloD0MIGa2jqgnSbECUhpRSlGgVTQoBaBZHQJZNCbUgB911fZQoaAZoCWgPQwiRtYZSO2lyQJSGlFKUaBVNKAFoFkdAlk2Rguyu6nV9lChoBmgJaA9DCPewFwrYqGxAlIaUUpRoFU0nAWgWR0CWUMeJYT0ydX2UKGgGaAloD0MI3Qw34LMocECUhpRSlGgVTRYBaBZHQJZSNAkcCHR1fZQoaAZoCWgPQwh4RIXq5mFyQJSGlFKUaBVNFAFoFkdAllL9NJvo/3V9lChoBmgJaA9DCDblCu8yaXFAlIaUUpRoFU0iAWgWR0CWU2MSK3uvdX2UKGgGaAloD0MI7ZxmgbYUc0CUhpRSlGgVTSgBaBZHQJZTZVAAyVR1fZQoaAZoCWgPQwhQx2MGqgltQJSGlFKUaBVNNwFoFkdAllQMfRu0kXV9lChoBmgJaA9DCHR5c7hWam1AlIaUUpRoFU00AWgWR0CWVIlsguAadX2UKGgGaAloD0MItiv0wbJrbECUhpRSlGgVTSsBaBZHQJZVGbe/Ho51fZQoaAZoCWgPQwjrdCDrKZxvQJSGlFKUaBVNAwFoFkdAllVCbc45tHV9lChoBmgJaA9DCBpuwOeHXnFAlIaUUpRoFU0oAWgWR0CWVX4wyqMndX2UKGgGaAloD0MIkNrEyf14XkCUhpRSlGgVTegDaBZHQJZV28lHBk91fZQoaAZoCWgPQwiC/61kh5lyQJSGlFKUaBVNMAFoFkdAllZBwuM+/3V9lChoBmgJaA9DCMsw7gaRR3BAlIaUUpRoFU0JAWgWR0CWVnC66J66dX2UKGgGaAloD0MI9tIUAc5mckCUhpRSlGgVTQIBaBZHQJZW4lb/wRZ1fZQoaAZoCWgPQwi++njoO6RxQJSGlFKUaBVNLQFoFkdAlld/pUxVQ3V9lChoBmgJaA9DCFIpdjQOZ3NAlIaUUpRoFUv2aBZHQJZY0bPyCnR1fZQoaAZoCWgPQwj3rGu0HPFvQJSGlFKUaBVNEgFoFkdAllwIFRpDeHV9lChoBmgJaA9DCDdUjPM3AnFAlIaUUpRoFU0dAWgWR0CWXCHAh0QsdX2UKGgGaAloD0MIPwJ/+DkicECUhpRSlGgVTTEBaBZHQJZcNbu+h5B1fZQoaAZoCWgPQwhvfsNEQ8RwQJSGlFKUaBVNHAFoFkdAllx0ORT0hHV9lChoBmgJaA9DCF4R/G8lb3NAlIaUUpRoFU0jAWgWR0CWcF91U2k0dX2UKGgGaAloD0MIqFMe3Yhnb0CUhpRSlGgVTR0BaBZHQJZwnkLhJiB1fZQoaAZoCWgPQwgX1LfM6UByQJSGlFKUaBVNDAFoFkdAlnCaL0jC53V9lChoBmgJaA9DCP61vHI99W1AlIaUUpRoFUv/aBZHQJZxAsasIVx1fZQoaAZoCWgPQwhnRj8aTqpwQJSGlFKUaBVNGAFoFkdAlnEhH5Jsf3V9lChoBmgJaA9DCMxB0NGqEm5AlIaUUpRoFU0LAWgWR0CWcb++M6zWdX2UKGgGaAloD0MIvaseME83cECUhpRSlGgVTSoBaBZHQJZx2xoqTbF1fZQoaAZoCWgPQwiUha+v9RlyQJSGlFKUaBVNFQFoFkdAlnIvvnbItHV9lChoBmgJaA9DCLKfxVKk/G1AlIaUUpRoFU0lAWgWR0CWcxRUm2LHdX2UKGgGaAloD0MIvcKC+wELbkCUhpRSlGgVTTgBaBZHQJZ0aQQtjCp1fZQoaAZoCWgPQwhR9pZyvtFbQJSGlFKUaBVN6ANoFkdAlnZm0E5hjXV9lChoBmgJaA9DCPESnPpAq2xAlIaUUpRoFU1FAWgWR0CWdomcOLBLdX2UKGgGaAloD0MIq3Xicjw2cECUhpRSlGgVS/FoFkdAlna+IVM233V9lChoBmgJaA9DCIwVNZgG4nFAlIaUUpRoFUv8aBZHQJZ3IE4ecQR1fZQoaAZoCWgPQwjvyFht/u9AQJSGlFKUaBVL2mgWR0CWdzkQPI4mdX2UKGgGaAloD0MI98q8VVdEcECUhpRSlGgVTREBaBZHQJZ3qV5a/yp1fZQoaAZoCWgPQwisAUpDjeNuQJSGlFKUaBVNHAFoFkdAlnhDl1bJOnV9lChoBmgJaA9DCASsVbsmrFBAlIaUUpRoFUuraBZHQJZ4fTDwYtR1fZQoaAZoCWgPQwh9WkV/6J5xQJSGlFKUaBVNEwFoFkdAlni0RODaoXV9lChoBmgJaA9DCPIiE/BrQnBAlIaUUpRoFU0WAWgWR0CWeVCeEqUedX2UKGgGaAloD0MIMlncfyRxckCUhpRSlGgVTSkBaBZHQJZ5fbRF7Up1fZQoaAZoCWgPQwgzpmCNs1ZxQJSGlFKUaBVNMAFoFkdAlnoWhEjPfXV9lChoBmgJaA9DCFFLcytEC3JAlIaUUpRoFU0aAWgWR0CWejFo+OfedX2UKGgGaAloD0MIa9YZ31ezcECUhpRSlGgVTSsBaBZHQJZ6hF3IMjN1fZQoaAZoCWgPQwg5JSAmIdBwQJSGlFKUaBVNNwFoFkdAlntKJMxoI3V9lChoBmgJaA9DCLVtGAXB+XJAlIaUUpRoFU0MAWgWR0CWfEC9ytFKdX2UKGgGaAloD0MIcsEZ/H1VbUCUhpRSlGgVS/9oFkdAln9hsImgJ3V9lChoBmgJaA9DCIxIFFpW1HBAlIaUUpRoFU0fAWgWR0CWf34ffXPJdX2UKGgGaAloD0MIYVCm0eRUckCUhpRSlGgVTSgBaBZHQJZ/e9Zid8R1fZQoaAZoCWgPQwj+J3/3juByQJSGlFKUaBVNNgFoFkdAloAawUxmCnV9lChoBmgJaA9DCJvkR/wK9nFAlIaUUpRoFU0lAWgWR0CWgCpN9H+ZdX2UKGgGaAloD0MIZFxxcdS+bUCUhpRSlGgVTRMBaBZHQJaBJktmL+B1fZQoaAZoCWgPQwh0CvKzEYZtQJSGlFKUaBVNQQFoFkdAloFGVE/jbXV9lChoBmgJaA9DCFirdk0IlnFAlIaUUpRoFUv9aBZHQJaBdI3BHkN1fZQoaAZoCWgPQwjjp3Fv/gtxQJSGlFKUaBVL/GgWR0CWgZ/YraufdX2UKGgGaAloD0MIYtwNojUybkCUhpRSlGgVTQsBaBZHQJaC403wTdt1fZQoaAZoCWgPQwjcSxqj9fxyQJSGlFKUaBVNZgFoFkdAloOERe1KG3V9lChoBmgJaA9DCMk+yLLgtXJAlIaUUpRoFU0vAWgWR0CWg+6dlNDddX2UKGgGaAloD0MIRBZp4l0TcUCUhpRSlGgVTSUBaBZHQJaEJZq20At1fZQoaAZoCWgPQwg9tmXA2dluQJSGlFKUaBVNBAFoFkdAlohHxri2lXV9lChoBmgJaA9DCNFZZhEKDnFAlIaUUpRoFU1fAWgWR0CWiIluWKMvdX2UKGgGaAloD0MIwK4mT9lqcECUhpRSlGgVTSYBaBZHQJaJscPvrnl1fZQoaAZoCWgPQwgmxccnpEFwQJSGlFKUaBVNKgFoFkdAlonWViWmg3V9lChoBmgJaA9DCAStwJDVO25AlIaUUpRoFUv1aBZHQJaJ6Vs1sLx1fZQoaAZoCWgPQwhDAdvBCFtuQJSGlFKUaBVNJgFoFkdAlopMynDR+nV9lChoBmgJaA9DCMv1tpkK4XFAlIaUUpRoFU0bAWgWR0CWiuUFSsKcdX2UKGgGaAloD0MIoMA7+XRAbkCUhpRSlGgVS/RoFkdAlowyZv1lG3V9lChoBmgJaA9DCHQjLCpiRXJAlIaUUpRoFU0+AWgWR0CWjETsY2sJdX2UKGgGaAloD0MI0T/BxUpYcUCUhpRSlGgVTWIBaBZHQJaMc5fdAPd1fZQoaAZoCWgPQwgTRrOyfaNxQJSGlFKUaBVNQwFoFkdAlozLzf779HV9lChoBmgJaA9DCGSw4lTrgm9AlIaUUpRoFUv1aBZHQJaM5SXMQmN1fZQoaAZoCWgPQwhxHk5g+h5xQJSGlFKUaBVNJgFoFkdAlo0prYXfqHV9lChoBmgJaA9DCH0G1JvRDXJAlIaUUpRoFU1BAWgWR0CWjr+NcW0rdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
Unit1_model1_default/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84a7e04b8ff6f10fcc507797214ffa32c5c8f75185c1e135a5c66f17fa65b0c1
3
+ size 87929
Unit1_model1_default/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf03752f54374dc3c1746ec27cd5669eb6634274246fdc898c7513accc3e52c3
3
+ size 43201
Unit1_model1_default/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
Unit1_model1_default/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8998a3d0d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8998a3d160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8998a3d1f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8998a3d280>", "_build": "<function ActorCriticPolicy._build at 0x7f8998a3d310>", "forward": "<function ActorCriticPolicy.forward at 0x7f8998a3d3a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8998a3d430>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8998a3d4c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8998a3d550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8998a3d5e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8998a3d670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8998a3a2d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672971366094663161, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALO/Rb3S1O67wEGxPLCrHj3aike9bi4BPgAAgD8AAIA/wDqDvYN+BrwqSX87yrCcPBmFar1XKII9AACAPwAAgD/G7Q6+PZ9+u53xwbXRTQKzAueqPPKrBzUAAIA/AACAP4D6xD1cQZU+utMrvmqdgb5nJbc8CFScPQAAAAAAAAAAZqb+O65LibqydJq8RqucPO2cfzuJ9Ia9AACAPwAAgD8mopG+0bFAvfmWGTqjXgU5mWqlPsO2T7kAAIA/AACAP+Z+9j0EQLo+C1ODvhU8lL6VO1O8ilsqvAAAAAAAAAAAzVQMvRJoPz64wDG9BOKCvomkkzxKqJc7AAAAAAAAAADA58K9rvn1ukj1Ib0T9os83UIYPAYYcr0AAAAAAACAP80v5D1PiBs9qdW7vXDlL74/ih8942RdvQAAAAAAAAAAQNmUPdI9kruUHY69bxwHvAOM4ry4kOa8AACAPwAAgD/A1rg9/dZqPmpcE75+bke+uriBPPpLQL0AAAAAAAAAAGZypr1s6OU+Td83PX7Prr5f5Wo9s22ROwAAAAAAAAAAaM+cvuEnez/+fea9+oIBv+rskL6yRGO8AAAAAAAAAACam+Y8KQRGusBKXztexI88njoqO+6Oer0AAIA/AACAPw0Z9734PII+5rBzPtBubL7vJr08BZfQPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/67PnPW+bECUhpRSlIwBbJRNJgGMAXSUR0CWPlfT1CgLdX2UKGgGaAloD0MIjIF1HH+WcECUhpRSlGgVTSIBaBZHQJY+23azu4R1fZQoaAZoCWgPQwipaRfTDCtxQJSGlFKUaBVNCwFoFkdAlj+QsCkoF3V9lChoBmgJaA9DCFtc4zNZgHBAlIaUUpRoFU1DAWgWR0CWP9ApazNVdX2UKGgGaAloD0MI8WJhiBw0c0CUhpRSlGgVTU8BaBZHQJZABRXOnl51fZQoaAZoCWgPQwi/J9apcpJwQJSGlFKUaBVNMQFoFkdAlkB0KiO/+XV9lChoBmgJaA9DCD4hO2/jmnJAlIaUUpRoFUv6aBZHQJZBACW/rSp1fZQoaAZoCWgPQwjVWS2wB7ByQJSGlFKUaBVNBQFoFkdAlkG3yqdYn3V9lChoBmgJaA9DCOTbuwa9ZHFAlIaUUpRoFU0jAWgWR0CWQg7vG6wudX2UKGgGaAloD0MIzsEzockackCUhpRSlGgVTSMBaBZHQJZCDd0q6OJ1fZQoaAZoCWgPQwh3oiQk0oJyQJSGlFKUaBVNKQFoFkdAlkJMUmD15HV9lChoBmgJaA9DCGMoJ9qV2XBAlIaUUpRoFU0UAWgWR0CWQ2n+hoM8dX2UKGgGaAloD0MIRzmYTQDqbkCUhpRSlGgVTSIBaBZHQJZDw6xPfsN1fZQoaAZoCWgPQwg/i6VIftFxQJSGlFKUaBVNBQFoFkdAlkY2Ts6aLHV9lChoBmgJaA9DCPn1Q2xwdHJAlIaUUpRoFU0eAWgWR0CWSCjPfKp2dX2UKGgGaAloD0MI/1iIDgFDcECUhpRSlGgVTQYBaBZHQJZIiEDhcZ91fZQoaAZoCWgPQwit3uF2aKBvQJSGlFKUaBVNDwFoFkdAlkifzJ6ppHV9lChoBmgJaA9DCOhrlsuGcXFAlIaUUpRoFU08AWgWR0CWSMMaS9uhdX2UKGgGaAloD0MIfuGVJI8ocUCUhpRSlGgVTUwBaBZHQJZI+LNwBHV1fZQoaAZoCWgPQwiL/WX35GRwQJSGlFKUaBVL+WgWR0CWSTUtZmqYdX2UKGgGaAloD0MIesVTj3RkcUCUhpRSlGgVS/BoFkdAlkoNPk7wKHV9lChoBmgJaA9DCBFV+DP8wHFAlIaUUpRoFU00AWgWR0CWSpki2UjcdX2UKGgGaAloD0MInPwWney0cUCUhpRSlGgVTR8BaBZHQJZLSJSBK+V1fZQoaAZoCWgPQwgSEmkb/9JuQJSGlFKUaBVNbQFoFkdAlkuddNWU8nV9lChoBmgJaA9DCJZbWg2JQXFAlIaUUpRoFU04AWgWR0CWTMltj0+UdX2UKGgGaAloD0MIGa2jqgnSbECUhpRSlGgVTQoBaBZHQJZNCbUgB911fZQoaAZoCWgPQwiRtYZSO2lyQJSGlFKUaBVNKAFoFkdAlk2Rguyu6nV9lChoBmgJaA9DCPewFwrYqGxAlIaUUpRoFU0nAWgWR0CWUMeJYT0ydX2UKGgGaAloD0MI3Qw34LMocECUhpRSlGgVTRYBaBZHQJZSNAkcCHR1fZQoaAZoCWgPQwh4RIXq5mFyQJSGlFKUaBVNFAFoFkdAllL9NJvo/3V9lChoBmgJaA9DCDblCu8yaXFAlIaUUpRoFU0iAWgWR0CWU2MSK3uvdX2UKGgGaAloD0MI7ZxmgbYUc0CUhpRSlGgVTSgBaBZHQJZTZVAAyVR1fZQoaAZoCWgPQwhQx2MGqgltQJSGlFKUaBVNNwFoFkdAllQMfRu0kXV9lChoBmgJaA9DCHR5c7hWam1AlIaUUpRoFU00AWgWR0CWVIlsguAadX2UKGgGaAloD0MItiv0wbJrbECUhpRSlGgVTSsBaBZHQJZVGbe/Ho51fZQoaAZoCWgPQwjrdCDrKZxvQJSGlFKUaBVNAwFoFkdAllVCbc45tHV9lChoBmgJaA9DCBpuwOeHXnFAlIaUUpRoFU0oAWgWR0CWVX4wyqMndX2UKGgGaAloD0MIkNrEyf14XkCUhpRSlGgVTegDaBZHQJZV28lHBk91fZQoaAZoCWgPQwiC/61kh5lyQJSGlFKUaBVNMAFoFkdAllZBwuM+/3V9lChoBmgJaA9DCMsw7gaRR3BAlIaUUpRoFU0JAWgWR0CWVnC66J66dX2UKGgGaAloD0MI9tIUAc5mckCUhpRSlGgVTQIBaBZHQJZW4lb/wRZ1fZQoaAZoCWgPQwi++njoO6RxQJSGlFKUaBVNLQFoFkdAlld/pUxVQ3V9lChoBmgJaA9DCFIpdjQOZ3NAlIaUUpRoFUv2aBZHQJZY0bPyCnR1fZQoaAZoCWgPQwj3rGu0HPFvQJSGlFKUaBVNEgFoFkdAllwIFRpDeHV9lChoBmgJaA9DCDdUjPM3AnFAlIaUUpRoFU0dAWgWR0CWXCHAh0QsdX2UKGgGaAloD0MIPwJ/+DkicECUhpRSlGgVTTEBaBZHQJZcNbu+h5B1fZQoaAZoCWgPQwhvfsNEQ8RwQJSGlFKUaBVNHAFoFkdAllx0ORT0hHV9lChoBmgJaA9DCF4R/G8lb3NAlIaUUpRoFU0jAWgWR0CWcF91U2k0dX2UKGgGaAloD0MIqFMe3Yhnb0CUhpRSlGgVTR0BaBZHQJZwnkLhJiB1fZQoaAZoCWgPQwgX1LfM6UByQJSGlFKUaBVNDAFoFkdAlnCaL0jC53V9lChoBmgJaA9DCP61vHI99W1AlIaUUpRoFUv/aBZHQJZxAsasIVx1fZQoaAZoCWgPQwhnRj8aTqpwQJSGlFKUaBVNGAFoFkdAlnEhH5Jsf3V9lChoBmgJaA9DCMxB0NGqEm5AlIaUUpRoFU0LAWgWR0CWcb++M6zWdX2UKGgGaAloD0MIvaseME83cECUhpRSlGgVTSoBaBZHQJZx2xoqTbF1fZQoaAZoCWgPQwiUha+v9RlyQJSGlFKUaBVNFQFoFkdAlnIvvnbItHV9lChoBmgJaA9DCLKfxVKk/G1AlIaUUpRoFU0lAWgWR0CWcxRUm2LHdX2UKGgGaAloD0MIvcKC+wELbkCUhpRSlGgVTTgBaBZHQJZ0aQQtjCp1fZQoaAZoCWgPQwhR9pZyvtFbQJSGlFKUaBVN6ANoFkdAlnZm0E5hjXV9lChoBmgJaA9DCPESnPpAq2xAlIaUUpRoFU1FAWgWR0CWdomcOLBLdX2UKGgGaAloD0MIq3Xicjw2cECUhpRSlGgVS/FoFkdAlna+IVM233V9lChoBmgJaA9DCIwVNZgG4nFAlIaUUpRoFUv8aBZHQJZ3IE4ecQR1fZQoaAZoCWgPQwjvyFht/u9AQJSGlFKUaBVL2mgWR0CWdzkQPI4mdX2UKGgGaAloD0MI98q8VVdEcECUhpRSlGgVTREBaBZHQJZ3qV5a/yp1fZQoaAZoCWgPQwisAUpDjeNuQJSGlFKUaBVNHAFoFkdAlnhDl1bJOnV9lChoBmgJaA9DCASsVbsmrFBAlIaUUpRoFUuraBZHQJZ4fTDwYtR1fZQoaAZoCWgPQwh9WkV/6J5xQJSGlFKUaBVNEwFoFkdAlni0RODaoXV9lChoBmgJaA9DCPIiE/BrQnBAlIaUUpRoFU0WAWgWR0CWeVCeEqUedX2UKGgGaAloD0MIMlncfyRxckCUhpRSlGgVTSkBaBZHQJZ5fbRF7Up1fZQoaAZoCWgPQwgzpmCNs1ZxQJSGlFKUaBVNMAFoFkdAlnoWhEjPfXV9lChoBmgJaA9DCFFLcytEC3JAlIaUUpRoFU0aAWgWR0CWejFo+OfedX2UKGgGaAloD0MIa9YZ31ezcECUhpRSlGgVTSsBaBZHQJZ6hF3IMjN1fZQoaAZoCWgPQwg5JSAmIdBwQJSGlFKUaBVNNwFoFkdAlntKJMxoI3V9lChoBmgJaA9DCLVtGAXB+XJAlIaUUpRoFU0MAWgWR0CWfEC9ytFKdX2UKGgGaAloD0MIcsEZ/H1VbUCUhpRSlGgVS/9oFkdAln9hsImgJ3V9lChoBmgJaA9DCIxIFFpW1HBAlIaUUpRoFU0fAWgWR0CWf34ffXPJdX2UKGgGaAloD0MIYVCm0eRUckCUhpRSlGgVTSgBaBZHQJZ/e9Zid8R1fZQoaAZoCWgPQwj+J3/3juByQJSGlFKUaBVNNgFoFkdAloAawUxmCnV9lChoBmgJaA9DCJvkR/wK9nFAlIaUUpRoFU0lAWgWR0CWgCpN9H+ZdX2UKGgGaAloD0MIZFxxcdS+bUCUhpRSlGgVTRMBaBZHQJaBJktmL+B1fZQoaAZoCWgPQwh0CvKzEYZtQJSGlFKUaBVNQQFoFkdAloFGVE/jbXV9lChoBmgJaA9DCFirdk0IlnFAlIaUUpRoFUv9aBZHQJaBdI3BHkN1fZQoaAZoCWgPQwjjp3Fv/gtxQJSGlFKUaBVL/GgWR0CWgZ/YraufdX2UKGgGaAloD0MIYtwNojUybkCUhpRSlGgVTQsBaBZHQJaC403wTdt1fZQoaAZoCWgPQwjcSxqj9fxyQJSGlFKUaBVNZgFoFkdAloOERe1KG3V9lChoBmgJaA9DCMk+yLLgtXJAlIaUUpRoFU0vAWgWR0CWg+6dlNDddX2UKGgGaAloD0MIRBZp4l0TcUCUhpRSlGgVTSUBaBZHQJaEJZq20At1fZQoaAZoCWgPQwg9tmXA2dluQJSGlFKUaBVNBAFoFkdAlohHxri2lXV9lChoBmgJaA9DCNFZZhEKDnFAlIaUUpRoFU1fAWgWR0CWiIluWKMvdX2UKGgGaAloD0MIwK4mT9lqcECUhpRSlGgVTSYBaBZHQJaJscPvrnl1fZQoaAZoCWgPQwgmxccnpEFwQJSGlFKUaBVNKgFoFkdAlonWViWmg3V9lChoBmgJaA9DCAStwJDVO25AlIaUUpRoFUv1aBZHQJaJ6Vs1sLx1fZQoaAZoCWgPQwhDAdvBCFtuQJSGlFKUaBVNJgFoFkdAlopMynDR+nV9lChoBmgJaA9DCMv1tpkK4XFAlIaUUpRoFU0bAWgWR0CWiuUFSsKcdX2UKGgGaAloD0MIoMA7+XRAbkCUhpRSlGgVS/RoFkdAlowyZv1lG3V9lChoBmgJaA9DCHQjLCpiRXJAlIaUUpRoFU0+AWgWR0CWjETsY2sJdX2UKGgGaAloD0MI0T/BxUpYcUCUhpRSlGgVTWIBaBZHQJaMc5fdAPd1fZQoaAZoCWgPQwgTRrOyfaNxQJSGlFKUaBVNQwFoFkdAlozLzf779HV9lChoBmgJaA9DCGSw4lTrgm9AlIaUUpRoFUv1aBZHQJaM5SXMQmN1fZQoaAZoCWgPQwhxHk5g+h5xQJSGlFKUaBVNJgFoFkdAlo0prYXfqHV9lChoBmgJaA9DCH0G1JvRDXJAlIaUUpRoFU1BAWgWR0CWjr+NcW0rdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (230 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 250.35095010126014, "std_reward": 20.485784403824713, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-06T02:42:01.430240"}