font-identifier / README.md
gaborcselle's picture
font-identifier
6ff0951
|
raw
history blame
2.94 kB
metadata
license: apache-2.0
base_model: microsoft/resnet-18
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: font-identifier
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9040816326530612

font-identifier

This model is a fine-tuned version of microsoft/resnet-18 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3626
  • Accuracy: 0.9041

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.929 0.98 30 3.8215 0.0429
3.2162 1.98 61 2.9144 0.2816
2.4387 2.99 92 2.1019 0.4776
1.9404 4.0 123 1.5607 0.6041
1.5756 4.98 153 1.3012 0.6449
1.3374 5.98 184 1.0699 0.7102
1.1912 6.99 215 0.9145 0.7633
1.0716 8.0 246 0.7864 0.7898
0.9751 8.98 276 0.6894 0.8204
0.8211 9.98 307 0.6256 0.8510
0.8254 10.99 338 0.5563 0.8633
0.742 12.0 369 0.5149 0.8694
0.6949 12.98 399 0.4625 0.8878
0.6401 13.98 430 0.4799 0.8857
0.6304 14.99 461 0.3970 0.8980
0.6239 16.0 492 0.4016 0.9
0.5911 16.98 522 0.4271 0.8755
0.5764 17.98 553 0.3922 0.9
0.5461 18.99 584 0.3750 0.9
0.6236 19.51 600 0.3626 0.9041

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.0.0
  • Datasets 2.12.0
  • Tokenizers 0.14.1