--- license: apache-2.0 datasets: - gair-prox/open-web-math-pro language: - en base_model: - mistralai/Mistral-7B-v0.1 pipeline_tag: text-generation library_name: transformers --- # Mistral-7B-ProXMath
[ArXiv](http://arxiv.org/abs/2409.17115) | [Data: OpenWebMath-Pro](https://huggingface.co/datasets/gair-prox/open-web-math-pro) | [Code](https://github.com/GAIR-NLP/program-every-example) **Mistral-7B-ProXMath** is a math-adapted Mistral-7B-v0.1 model that is continually pre-trained on [OpenWebMath-Pro](https://huggingface.co/datasets/gair-prox/open-web-math-pro) (a refined version by ProX) for **10**B tokens. ## Evaluations ProX models are evaluated on 9 common math reasoning benchmarks. | Model | asdiv | gsm8k | mathqa | mawps | minerva_math | mmlu_stem | sat_math | svamp | tabmwp | average | |:---------------------:|:--------:|:--------:|:--------:|:--------:|:------------:|:---------:|:--------:|:--------:|:--------:|:--------:| | Mistral-7B-v0.1 | 68.5 | 40.6 | 32.3 | 87.0 | 11.4 | 50.0 | 56.2 | **65.4** | **52.9** | 51.6 | | Mistral-7B-ProXMath | **72.9** | **51.0** | **53.0** | **89.2** | **22.4** | **54.2** | **75.0** | 64.9 | 49.8 | **59.2** | ### Citation ``` @article{zhou2024programming, title={Programming Every Example: Lifting Pre-training Data Quality like Experts at Scale}, author={Zhou, Fan and Wang, Zengzhi and Liu, Qian and Li, Junlong and Liu, Pengfei}, journal={arXiv preprint arXiv:2409.17115}, year={2024} } ```