Text Generation
Transformers
PyTorch
Italian
English
mistral
conversational
text-generation-inference
Inference Endpoints
File size: 7,104 Bytes
458f5ed
 
 
 
 
 
 
 
 
 
 
b61da2d
458f5ed
 
b61da2d
 
 
 
 
458f5ed
 
 
 
 
b61da2d
458f5ed
 
 
 
 
9d71359
458f5ed
 
 
b61da2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
458f5ed
 
 
 
 
 
 
b61da2d
 
458f5ed
 
 
 
 
 
b61da2d
9d71359
458f5ed
 
 
b61da2d
458f5ed
 
 
b61da2d
458f5ed
 
 
 
b61da2d
458f5ed
 
 
b61da2d
458f5ed
 
 
 
 
 
 
 
 
 
b61da2d
458f5ed
 
 
9d71359
458f5ed
 
 
b61da2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
---
license: apache-2.0
datasets:
- andreabac3/Quora-Italian-Fauno-Baize
- andreabac3/StackOverflow-Italian-Fauno-Baize
- andreabac3/MedQuaAD-Italian-Fauno-Baize
language:
- it
- en
pipeline_tag: text-generation
---

# cerbero-7b Italian LLM ๐Ÿš€ 

> ๐Ÿ”ฅ Attention! The **new** and **more capable** version of **cerbero-7b** is now **available**!

> ๐Ÿ“ข **cerbero-7b** is the first **100% Free** and Open Source **Italian Large Language Model** (LLM) ready to be used for **research** or **commercial applications**.

**Try an online demo [here](https://huggingface.co/spaces/galatolo/chat-with-cerbero-7b)** (quantized demo running on CPU, a lot less powerful than the original cerbero-7b)

<p align="center">
  <img width="300" height="300" src="./README.md.d/cerbero.png">
</p>

Built on top of [**mistral-7b**](https://mistral.ai/news/announcing-mistral-7b/), which outperforms Llama2 13B across all benchmarks and surpasses Llama1 34B in numerous metrics.

**cerbero-7b** is specifically crafted to fill the void in Italy's AI landscape.

A **cambrian explosion** of **Italian Language Models** is essential for building advanced AI architectures that can cater to the diverse needs of the population.

**cerbero-7b**, alongside companions like [**Camoscio**](https://github.com/teelinsan/camoscio) and [**Fauno**](https://github.com/RSTLess-research/Fauno-Italian-LLM), aims to help **kick-start** this **revolution** in Italy, ushering in an era where sophisticated **AI solutions** can seamlessly interact with and understand the intricacies of the **Italian language**, thereby empowering **innovation** across **industries** and fostering a deeper **connection** between **technology** and the **people** it serves.

**cerbero-7b** is released under the **permissive** Apache 2.0 **license**, allowing **unrestricted usage**, even **for commercial applications**.

## Model Evaluation Results ๐Ÿ“ˆ

The `cerbero-7b` model has been rigorously evaluated across several benchmarks to demonstrate its proficiency in understanding and generating Italian text. Below are the summarized results showcasing its performance:

### SQuAD-it Evaluation

The Stanford Question Answering Dataset (SQuAD) in Italian (SQuAD-it) is used to evaluate the model's reading comprehension and question-answering capabilities. The following table presents the F1 score and Exact Match (EM) metrics:

| Model                                        | F1 Score | Exact Match (EM) |
|----------------------------------------------|--------------|----------------------|
| **cerbero-7b**                               | **72.55%**   | **55.6%**            |
| Fauno                                        | 44.46%       | 0.00%                |
| Camoscio                                     | 37.42%       | 0.00%                |
| mistral-7b                                   | 15.55%       | 8.50%                |

### EVALITA Benchmark Results

EVALITA benchmarks assess the model's performance in tasks like toxicity detection, irony detection, and sentiment analysis. The table below shows the F1 scores for these tasks:

| Model                                        | Toxicity Detection | Irony Detection | Sentiment Analysis |
|----------------------------------------------|--------------------|-----------------|--------------------|
| **cerbero-7b**                               | **63.04%**         | **48.51%**      | **61.80%**         |
| Fauno                                        | 33.84%             | 39.17%          | 12.23%             |
| Camoscio                                     | 38.18%             | 39.65%          | 13.33%             |
| mistral-7b                                   | 34.16%             | 34.16%          | 12.14%             |


## Why Cerbero? ๐Ÿค”

The name "Cerbero," inspired by the three-headed dog that guards the gates of the Underworld in Greek mythology, encapsulates the essence of our model, drawing strength from three foundational pillars:

- **Base Model: mistral-7b** ๐Ÿ—๏ธ
  cerbero-7b builds upon the formidable **mistral-7b** as its base model. This choice ensures a robust foundation, leveraging the power and capabilities of a cutting-edge language model.

- **Datasets: Cerbero Dataset** ๐Ÿ“š
  The Cerbero Dataset is a groundbreaking collection specifically curated to enhance the proficiency of cerbero-7b in understanding and generating Italian text. This dataset is a product of an innovative method combining dynamic self-chat mechanisms with advanced Large Language Model (LLM) technology. Refer to the [paper](README.md) for more details.

- **Licensing: Apache 2.0** ๐Ÿ•Š๏ธ
  Released under the **permissive Apache 2.0 license**, cerbero-7b promotes openness and collaboration. This licensing choice empowers developers with the freedom for unrestricted usage, fostering a community-driven approach to advancing AI in Italy and beyond.

## Training Details ๐Ÿš€

**cerbero-7b** is a **fully fine-tuned** LLM, distinguishing itself from LORA or QLORA fine-tunes. 
The model is trained on an expansive Italian Large Language Model (LLM) using synthetic datasets generated through dynamic self-chat on a large context window of **8192 tokens**

### Dataset Composition ๐Ÿ“Š

> ๐Ÿ“ข Details on the **Cerbero Dataset** will be updated shortly!

### Training Setup โš™๏ธ

**cerbero-7b** is trained on an NVIDIA DGX H100:

- **Hardware:** Utilizing 8xH100 GPUs, each with 80 GB VRAM. ๐Ÿ–ฅ๏ธ
- **Parallelism:** DeepSpeed Zero stage 1 parallelism for optimal training efficiency.โœจ

The model has been trained for **1 epoch**, ensuring a convergence of knowledge and proficiency in handling diverse linguistic tasks.

## Getting Started ๐Ÿš€

You can load **cerbero-7b** using [๐Ÿค—transformers](https://huggingface.co/docs/transformers/index)

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("galatolo/cerbero-7b")
tokenizer = AutoTokenizer.from_pretrained("galatolo/cerbero-7b")

prompt = """Questa รจ una conversazione tra un umano ed un assistente AI.
[|Umano|] Come posso distinguere un AI da un umano?
[|Assistente|]"""

input_ids = tokenizer(prompt, return_tensors='pt').input_ids
with torch.no_grad():
    output_ids = model.generate(input_ids, max_new_tokens=128)

generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
print(generated_text)
```

### GGUF and llama.cpp

**cerbero-7b** is fully **compatibile** with [llama.cpp](https://github.com/ggerganov/llama.cpp)

You can find the **original** and **quantized** versions of **cerbero-7b** in the `gguf` format [here](https://huggingface.co/galatolo/cerbero-7b-gguf/tree/main)

```python
from llama_cpp import Llama
from huggingface_hub import hf_hub_download  

llm = Llama(
    model_path=hf_hub_download(
        repo_id="galatolo/cerbero-7b-gguf",
        filename="ggml-model-Q4_K.gguf",
    ),
    n_ctx=4086,
) 

llm.generate("""Questa รจ una conversazione tra un umano ed un assistente AI.
[|Umano|] Come posso distinguere un AI da un umano?
[|Assistente|]""")
```