File size: 1,404 Bytes
548f230 1c4db45 548f230 1c4db45 548f230 1c4db45 548f230 1c4db45 548f230 1c4db45 548f230 1c4db45 548f230 1c4db45 548f230 1c4db45 548f230 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
---
tags:
- text-regression
- anger
- emotion
- emotion intensity
language:
- unk
widget:
- text: I am furious
datasets:
- SemEval-2018-Task-1-Text-Regression-Task
co2_eq_emissions:
emissions: 0.030118000944741423
---
# twitter-roberta-base-anger-intensity
This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-2022-154m on the SemEval 2018 - Task 1 Affect in Tweets (subtask: El-reg / text regression).
Warning: Hosted inference API produces inaccurate values
# Model Trained Using AutoTrain
- Problem type: Single Column Regression
- Model ID: 72775139028
- CO2 Emissions (in grams): 0.0301
## Validation Metrics
- Loss: 0.011
- MSE: 0.011
- MAE: 0.085
- R2: 0.641
- RMSE: 0.103
- Explained Variance: 0.641
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I am furious"}' https://api-inference.huggingface.co/models/garrettbaber/twitter-roberta-base-anger-intensity
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("garrettbaber/twitter-roberta-base-anger-intensity")
tokenizer = AutoTokenizer.from_pretrained("garrettbaber/twitter-roberta-base-anger-intensity")
inputs = tokenizer("I am furious", return_tensors="pt")
outputs = model(**inputs)
``` |