--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-1B tags: - generated_from_trainer metrics: - accuracy model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1652 - Accuracy: 0.0431 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 2.6185 | 0.9970 | 82 | 2.6059 | 0.0323 | | 2.4398 | 1.9939 | 164 | 2.6266 | 0.0582 | | 2.4161 | 2.9909 | 246 | 2.3381 | 0.0905 | | 2.3511 | 4.0 | 329 | 2.2989 | 0.1013 | | 2.2733 | 4.9970 | 411 | 2.2880 | 0.0323 | | 2.3463 | 5.9939 | 493 | 2.1652 | 0.0431 | | 2.253 | 6.9909 | 575 | 2.1971 | 0.0431 | | 2.2243 | 7.9757 | 656 | 2.1854 | 0.1272 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3