michal-stefanik
commited on
Create train_txt2sql.py
Browse files- train_txt2sql.py +99 -0
train_txt2sql.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import random
|
3 |
+
from typing import List, Dict, Tuple
|
4 |
+
from adaptor.evaluators.generative import ROUGE, BLEU
|
5 |
+
from adaptor.lang_module import LangModule
|
6 |
+
from adaptor.objectives.seq2seq import Sequence2Sequence
|
7 |
+
from adaptor.utils import AdaptationArguments, StoppingStrategy
|
8 |
+
from adaptor.schedules import ParallelSchedule
|
9 |
+
from adaptor.adapter import Adapter
|
10 |
+
import wandb
|
11 |
+
|
12 |
+
# Dataset creation
|
13 |
+
|
14 |
+
## Define paths to JSON files
|
15 |
+
db_path = 'db_schemas.json'
|
16 |
+
spider_dataset_train_path = 'spider/train_spider.json'
|
17 |
+
spider_dataset_dev_path = 'spider/dev.json'
|
18 |
+
spider_syn_train_path = 'Spider-Syn/train_spider.json'
|
19 |
+
spider_syn_dev_path = 'Spider-Syn/dev.json'
|
20 |
+
|
21 |
+
## Open files
|
22 |
+
with open(db_path, 'r') as file_db:
|
23 |
+
database_schemas = json.load(file_db)
|
24 |
+
|
25 |
+
with open(spider_dataset_train_path, 'r') as file_spider:
|
26 |
+
spider_train_dataset = json.load(file_spider)
|
27 |
+
|
28 |
+
with open(spider_dataset_dev_path, 'r') as file_spider:
|
29 |
+
spider_dev_dataset = json.load(file_spider)
|
30 |
+
|
31 |
+
with open(spider_syn_train_path, 'r') as file_spider:
|
32 |
+
spider_syn_train_dataset = json.load(file_spider)
|
33 |
+
|
34 |
+
with open(spider_syn_dev_path, 'r') as file_spider:
|
35 |
+
spider_syn_dev_dataset = json.load(file_spider)
|
36 |
+
|
37 |
+
## Include spider questions with synonyms (questions include text which is not in DB columns)
|
38 |
+
spider_train_dataset.extend([question for question in spider_syn_train_dataset if question['SpiderQuestion']!=question['SpiderSynQuestion']])
|
39 |
+
spider_dev_dataset.extend([question for question in spider_syn_dev_dataset if question['SpiderQuestion']!=question['SpiderSynQuestion']])
|
40 |
+
|
41 |
+
random.shuffle(spider_train_dataset)
|
42 |
+
random.shuffle(spider_dev_dataset)
|
43 |
+
|
44 |
+
def create_prompt(question: str, schema: str) -> str:
|
45 |
+
return " ".join(["Question: ",question, "Schema:", schema])
|
46 |
+
|
47 |
+
def create_vals_and_labels(dataset: List[dict], db_dict: Dict[str, str]) -> Tuple[List[str], List[str]]:
|
48 |
+
list_labels = [data["query"] for data in dataset]
|
49 |
+
list_prompts = [create_prompt(data["question"], db_dict[data["db_id"]])
|
50 |
+
if "question" in data else create_prompt(data["SpiderSynQuestion"], db_dict[data["db_id"]]) for data in dataset]
|
51 |
+
return list_prompts, list_labels
|
52 |
+
|
53 |
+
## Training prompts and labels
|
54 |
+
prompts_train, labels_train = create_vals_and_labels(spider_train_dataset, database_schemas)
|
55 |
+
assert len(prompts_train)==len(labels_train)
|
56 |
+
|
57 |
+
## Evaluation prompts and labels
|
58 |
+
prompts_eval, labels_eval = create_vals_and_labels(spider_dev_dataset, database_schemas)
|
59 |
+
assert len(prompts_eval)==len(labels_eval)
|
60 |
+
|
61 |
+
# Training
|
62 |
+
|
63 |
+
lang_module = LangModule("google/t5-large-lm-adapt")
|
64 |
+
evaluators = [BLEU(), ROUGE(decides_convergence=True)]
|
65 |
+
|
66 |
+
wandb.init(project="chatbot")
|
67 |
+
|
68 |
+
seq_qa = Sequence2Sequence(lang_module,
|
69 |
+
texts_or_path=prompts_train,
|
70 |
+
labels_or_path=labels_train,
|
71 |
+
val_texts_or_path=prompts_eval,
|
72 |
+
val_labels_or_path=labels_eval,
|
73 |
+
batch_size=4,
|
74 |
+
val_evaluators=evaluators,
|
75 |
+
objective_id="txt2SQL_Spider")
|
76 |
+
|
77 |
+
training_arguments = AdaptationArguments(output_dir="checkpoints-txt2sql",
|
78 |
+
learning_rate=5e-5,
|
79 |
+
stopping_strategy=StoppingStrategy.ALL_OBJECTIVES_CONVERGED,
|
80 |
+
stopping_patience=8,
|
81 |
+
save_total_limit=8,
|
82 |
+
do_train=True,
|
83 |
+
do_eval=True,
|
84 |
+
bf16=True,
|
85 |
+
warmup_steps=100,
|
86 |
+
gradient_accumulation_steps=8,
|
87 |
+
logging_steps=10,
|
88 |
+
eval_steps=200,
|
89 |
+
save_steps=200,
|
90 |
+
num_train_epochs=10,
|
91 |
+
evaluation_strategy="steps")
|
92 |
+
|
93 |
+
|
94 |
+
schedule = ParallelSchedule(objectives=[seq_qa],
|
95 |
+
args=training_arguments)
|
96 |
+
adapter = Adapter(lang_module, schedule, args=training_arguments)
|
97 |
+
|
98 |
+
|
99 |
+
adapter.train()
|