File size: 1,722 Bytes
799986c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
license: mit
base_model: microsoft/deberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: deberta_large_finetuned_claimdecomp
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta_large_finetuned_claimdecomp
This model is a fine-tuned version of [microsoft/deberta-large](https://huggingface.co/microsoft/deberta-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7527
- Accuracy: 0.205
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 30000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 1.7337 | 50.0 | 5000 | 1.7495 | 0.255 |
| 1.728 | 100.0 | 10000 | 1.7511 | 0.205 |
| 1.7218 | 150.0 | 15000 | 1.7410 | 0.255 |
| 1.7259 | 200.0 | 20000 | 1.7513 | 0.205 |
| 1.727 | 250.0 | 25000 | 1.7506 | 0.255 |
| 1.7228 | 300.0 | 30000 | 1.7527 | 0.205 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.0.0
- Datasets 2.14.5
- Tokenizers 0.14.1
|