File size: 1,722 Bytes
799986c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c5b89a
799986c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c5b89a
799986c
 
 
 
 
 
 
 
 
 
 
9c5b89a
 
 
 
 
 
799986c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: mit
base_model: microsoft/deberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: deberta_large_finetuned_claimdecomp
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# deberta_large_finetuned_claimdecomp

This model is a fine-tuned version of [microsoft/deberta-large](https://huggingface.co/microsoft/deberta-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7614
- Accuracy: 0.205

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 30000

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 1.7304        | 50.0  | 5000  | 1.7493          | 0.255    |
| 1.7282        | 100.0 | 10000 | 1.7495          | 0.205    |
| 1.7196        | 150.0 | 15000 | 1.7457          | 0.255    |
| 1.7107        | 200.0 | 20000 | 1.7462          | 0.255    |
| 1.7107        | 250.0 | 25000 | 1.7666          | 0.205    |
| 1.6992        | 300.0 | 30000 | 1.7614          | 0.205    |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.0.0
- Datasets 2.14.5
- Tokenizers 0.14.1