--- license: mit base_model: microsoft/deberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta_large_finetuned_claimdecomp results: [] --- # deberta_large_finetuned_claimdecomp This model is a fine-tuned version of [microsoft/deberta-large](https://huggingface.co/microsoft/deberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7527 - Accuracy: 0.205 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 30000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.7337 | 50.0 | 5000 | 1.7495 | 0.255 | | 1.728 | 100.0 | 10000 | 1.7511 | 0.205 | | 1.7218 | 150.0 | 15000 | 1.7410 | 0.255 | | 1.7259 | 200.0 | 20000 | 1.7513 | 0.205 | | 1.727 | 250.0 | 25000 | 1.7506 | 0.255 | | 1.7228 | 300.0 | 30000 | 1.7527 | 0.205 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.0.0 - Datasets 2.14.5 - Tokenizers 0.14.1