gayanin commited on
Commit
7d519c1
·
1 Parent(s): 12a1511

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +23 -12
README.md CHANGED
@@ -14,15 +14,10 @@ should probably proofread and complete it, then remove this comment. -->
14
 
15
  This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
16
  It achieves the following results on the evaluation set:
17
- - eval_loss: 1.8403
18
- - eval_rouge2_precision: 0.298
19
- - eval_rouge2_recall: 0.1943
20
- - eval_rouge2_fmeasure: 0.2198
21
- - eval_runtime: 4.1041
22
- - eval_samples_per_second: 43.372
23
- - eval_steps_per_second: 2.924
24
- - epoch: 5.0
25
- - step: 500
26
 
27
  ## Model description
28
 
@@ -47,12 +42,28 @@ The following hyperparameters were used during training:
47
  - seed: 42
48
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
  - lr_scheduler_type: linear
50
- - num_epochs: 15
51
  - mixed_precision_training: Native AMP
52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
  ### Framework versions
54
 
55
- - Transformers 4.12.2
56
  - Pytorch 1.9.0+cu111
57
- - Datasets 1.14.0
58
  - Tokenizers 0.10.3
 
14
 
15
  This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
16
  It achieves the following results on the evaluation set:
17
+ - Loss: 1.6131
18
+ - Rouge2 Precision: 0.3
19
+ - Rouge2 Recall: 0.2152
20
+ - Rouge2 Fmeasure: 0.2379
 
 
 
 
 
21
 
22
  ## Model description
23
 
 
42
  - seed: 42
43
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
  - lr_scheduler_type: linear
45
+ - num_epochs: 10
46
  - mixed_precision_training: Native AMP
47
 
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
51
+ |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:|
52
+ | 2.1335 | 1.0 | 563 | 1.7632 | 0.2716 | 0.1936 | 0.2135 |
53
+ | 1.9373 | 2.0 | 1126 | 1.7037 | 0.2839 | 0.2068 | 0.2265 |
54
+ | 1.8827 | 3.0 | 1689 | 1.6723 | 0.2901 | 0.2118 | 0.2316 |
55
+ | 1.8257 | 4.0 | 2252 | 1.6503 | 0.2938 | 0.2115 | 0.2332 |
56
+ | 1.8152 | 5.0 | 2815 | 1.6386 | 0.2962 | 0.2139 | 0.2357 |
57
+ | 1.7939 | 6.0 | 3378 | 1.6284 | 0.2976 | 0.212 | 0.2354 |
58
+ | 1.7845 | 7.0 | 3941 | 1.6211 | 0.2991 | 0.2155 | 0.2383 |
59
+ | 1.7468 | 8.0 | 4504 | 1.6167 | 0.2994 | 0.217 | 0.239 |
60
+ | 1.7464 | 9.0 | 5067 | 1.6137 | 0.3007 | 0.2154 | 0.2382 |
61
+ | 1.744 | 10.0 | 5630 | 1.6131 | 0.3 | 0.2152 | 0.2379 |
62
+
63
+
64
  ### Framework versions
65
 
66
+ - Transformers 4.12.3
67
  - Pytorch 1.9.0+cu111
68
+ - Datasets 1.15.1
69
  - Tokenizers 0.10.3