gchhablani
commited on
Commit
•
b3e619b
1
Parent(s):
3aa590f
Update README.md
Browse files
README.md
CHANGED
@@ -23,7 +23,7 @@ model-index:
|
|
23 |
metrics:
|
24 |
- name: Test WER
|
25 |
type: wer
|
26 |
-
value:
|
27 |
---
|
28 |
|
29 |
# Wav2Vec2-Large-XLSR-53-Portuguese
|
@@ -51,15 +51,15 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
|
51 |
# Preprocessing the datasets.
|
52 |
# We need to read the aduio files as arrays
|
53 |
def speech_file_to_array_fn(batch):
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
|
58 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
59 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
60 |
|
61 |
with torch.no_grad():
|
62 |
-
|
63 |
|
64 |
predicted_ids = torch.argmax(logits, dim=-1)
|
65 |
|
@@ -80,45 +80,44 @@ from datasets import load_dataset, load_metric
|
|
80 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
81 |
import re
|
82 |
|
83 |
-
test_dataset = load_dataset("common_voice", "pt", split="test")
|
84 |
wer = load_metric("wer")
|
85 |
|
86 |
-
processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-pt")
|
87 |
-
model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-pt")
|
88 |
model.to("cuda")
|
89 |
|
90 |
-
chars_to_ignore_regex = '[
|
91 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
92 |
|
93 |
# Preprocessing the datasets.
|
94 |
# We need to read the aduio files as arrays
|
95 |
def speech_file_to_array_fn(batch):
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
|
101 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
102 |
|
103 |
# Preprocessing the datasets.
|
104 |
# We need to read the aduio files as arrays
|
105 |
def evaluate(batch):
|
106 |
-
|
107 |
|
108 |
-
|
109 |
-
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
|
115 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
116 |
|
117 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
118 |
```
|
119 |
|
120 |
-
**Test Result**:
|
121 |
-
|
122 |
|
123 |
## Training
|
124 |
|
@@ -127,27 +126,29 @@ The Common Voice `train` and `validation` datasets were used for training. The s
|
|
127 |
|
128 |
```bash
|
129 |
#!/usr/bin/env bash
|
130 |
-
python run_common_voice.py
|
131 |
-
--model_name_or_path="facebook/wav2vec2-large-xlsr-53"
|
132 |
-
--dataset_config_name="pt"
|
133 |
-
--output_dir=/workspace/output_models/pt/wav2vec2-large-xlsr-pt
|
134 |
-
--cache_dir=/workspace/data
|
135 |
-
--overwrite_output_dir
|
136 |
-
--num_train_epochs="30"
|
137 |
-
--per_device_train_batch_size="32"
|
138 |
-
--per_device_eval_batch_size="32"
|
139 |
-
--evaluation_strategy="steps"
|
140 |
-
--learning_rate="3e-4"
|
141 |
-
--warmup_steps="500"
|
142 |
-
--fp16
|
143 |
-
--freeze_feature_extractor
|
144 |
-
--save_steps="500"
|
145 |
-
--eval_steps="500"
|
146 |
-
--save_total_limit="1"
|
147 |
-
--logging_steps="500"
|
148 |
-
--group_by_length
|
149 |
-
--feat_proj_dropout="0.0"
|
150 |
-
--layerdrop="0.1"
|
151 |
-
--gradient_checkpointing
|
152 |
-
--do_train --do_eval
|
153 |
-
```
|
|
|
|
|
|
23 |
metrics:
|
24 |
- name: Test WER
|
25 |
type: wer
|
26 |
+
value: 17.22
|
27 |
---
|
28 |
|
29 |
# Wav2Vec2-Large-XLSR-53-Portuguese
|
|
|
51 |
# Preprocessing the datasets.
|
52 |
# We need to read the aduio files as arrays
|
53 |
def speech_file_to_array_fn(batch):
|
54 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
55 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
56 |
+
return batch
|
57 |
|
58 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
59 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
60 |
|
61 |
with torch.no_grad():
|
62 |
+
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
63 |
|
64 |
predicted_ids = torch.argmax(logits, dim=-1)
|
65 |
|
|
|
80 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
81 |
import re
|
82 |
|
83 |
+
test_dataset = load_dataset("common_voice", "pt", split="test")
|
84 |
wer = load_metric("wer")
|
85 |
|
86 |
+
processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-pt")
|
87 |
+
model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-pt")
|
88 |
model.to("cuda")
|
89 |
|
90 |
+
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\'\�]'
|
91 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
92 |
|
93 |
# Preprocessing the datasets.
|
94 |
# We need to read the aduio files as arrays
|
95 |
def speech_file_to_array_fn(batch):
|
96 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
97 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
98 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
99 |
+
return batch
|
100 |
|
101 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
102 |
|
103 |
# Preprocessing the datasets.
|
104 |
# We need to read the aduio files as arrays
|
105 |
def evaluate(batch):
|
106 |
+
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
107 |
|
108 |
+
with torch.no_grad():
|
109 |
+
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
110 |
|
111 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
112 |
+
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
113 |
+
return batch
|
114 |
|
115 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
116 |
|
117 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
118 |
```
|
119 |
|
120 |
+
**Test Result**: 17.22 %
|
|
|
121 |
|
122 |
## Training
|
123 |
|
|
|
126 |
|
127 |
```bash
|
128 |
#!/usr/bin/env bash
|
129 |
+
python run_common_voice.py \
|
130 |
+
--model_name_or_path="facebook/wav2vec2-large-xlsr-53" \
|
131 |
+
--dataset_config_name="pt" \
|
132 |
+
--output_dir=/workspace/output_models/pt/wav2vec2-large-xlsr-pt \
|
133 |
+
--cache_dir=/workspace/data \
|
134 |
+
--overwrite_output_dir \
|
135 |
+
--num_train_epochs="30" \
|
136 |
+
--per_device_train_batch_size="32" \
|
137 |
+
--per_device_eval_batch_size="32" \
|
138 |
+
--evaluation_strategy="steps" \
|
139 |
+
--learning_rate="3e-4" \
|
140 |
+
--warmup_steps="500" \
|
141 |
+
--fp16 \
|
142 |
+
--freeze_feature_extractor \
|
143 |
+
--save_steps="500" \
|
144 |
+
--eval_steps="500" \
|
145 |
+
--save_total_limit="1" \
|
146 |
+
--logging_steps="500" \
|
147 |
+
--group_by_length \
|
148 |
+
--feat_proj_dropout="0.0" \
|
149 |
+
--layerdrop="0.1" \
|
150 |
+
--gradient_checkpointing \
|
151 |
+
--do_train --do_eval \
|
152 |
+
```
|
153 |
+
|
154 |
+
Notebook containing the evaluation can be found [here](https://colab.research.google.com/drive/14e-zNK_5pm8EMY9EbeZerpHx7WsGycqG?usp=sharing).
|