gchhablani commited on
Commit
b3e619b
1 Parent(s): 3aa590f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +46 -45
README.md CHANGED
@@ -23,7 +23,7 @@ model-index:
23
  metrics:
24
  - name: Test WER
25
  type: wer
26
- value: {wer_result_on_test}
27
  ---
28
 
29
  # Wav2Vec2-Large-XLSR-53-Portuguese
@@ -51,15 +51,15 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
51
  # Preprocessing the datasets.
52
  # We need to read the aduio files as arrays
53
  def speech_file_to_array_fn(batch):
54
- \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
55
- \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
56
- \treturn batch
57
 
58
  test_dataset = test_dataset.map(speech_file_to_array_fn)
59
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
60
 
61
  with torch.no_grad():
62
- \tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
63
 
64
  predicted_ids = torch.argmax(logits, dim=-1)
65
 
@@ -80,45 +80,44 @@ from datasets import load_dataset, load_metric
80
  from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
81
  import re
82
 
83
- test_dataset = load_dataset("common_voice", "pt", split="test") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site.
84
  wer = load_metric("wer")
85
 
86
- processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-pt") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic`
87
- model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-pt") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic`
88
  model.to("cuda")
89
 
90
- chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\'\\�]'
91
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
92
 
93
  # Preprocessing the datasets.
94
  # We need to read the aduio files as arrays
95
  def speech_file_to_array_fn(batch):
96
- \t batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
97
- \t\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
98
- \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
99
- \treturn batch
100
 
101
  test_dataset = test_dataset.map(speech_file_to_array_fn)
102
 
103
  # Preprocessing the datasets.
104
  # We need to read the aduio files as arrays
105
  def evaluate(batch):
106
- \tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
107
 
108
- \twith torch.no_grad():
109
- \t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
110
 
111
- \tpred_ids = torch.argmax(logits, dim=-1)
112
- \tbatch["pred_strings"] = processor.batch_decode(pred_ids)
113
- \treturn batch
114
 
115
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
116
 
117
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
118
  ```
119
 
120
- **Test Result**: XX.XX % # TODO: write output of print here. IMPORTANT: Please remember to also replace {wer_result_on_test} at the top of with this value here. tags.
121
-
122
 
123
  ## Training
124
 
@@ -127,27 +126,29 @@ The Common Voice `train` and `validation` datasets were used for training. The s
127
 
128
  ```bash
129
  #!/usr/bin/env bash
130
- python run_common_voice.py \\
131
- --model_name_or_path="facebook/wav2vec2-large-xlsr-53" \\
132
- --dataset_config_name="pt" \\
133
- --output_dir=/workspace/output_models/pt/wav2vec2-large-xlsr-pt \\
134
- --cache_dir=/workspace/data \\
135
- --overwrite_output_dir \\
136
- --num_train_epochs="30" \\
137
- --per_device_train_batch_size="32" \\
138
- --per_device_eval_batch_size="32" \\
139
- --evaluation_strategy="steps" \\
140
- --learning_rate="3e-4" \\
141
- --warmup_steps="500" \\
142
- --fp16 \\
143
- --freeze_feature_extractor \\
144
- --save_steps="500" \\
145
- --eval_steps="500" \\
146
- --save_total_limit="1" \\
147
- --logging_steps="500" \\
148
- --group_by_length \\
149
- --feat_proj_dropout="0.0" \\
150
- --layerdrop="0.1" \\
151
- --gradient_checkpointing \\
152
- --do_train --do_eval \\
153
- ```
 
 
 
23
  metrics:
24
  - name: Test WER
25
  type: wer
26
+ value: 17.22
27
  ---
28
 
29
  # Wav2Vec2-Large-XLSR-53-Portuguese
 
51
  # Preprocessing the datasets.
52
  # We need to read the aduio files as arrays
53
  def speech_file_to_array_fn(batch):
54
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
55
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
56
+ return batch
57
 
58
  test_dataset = test_dataset.map(speech_file_to_array_fn)
59
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
60
 
61
  with torch.no_grad():
62
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
63
 
64
  predicted_ids = torch.argmax(logits, dim=-1)
65
 
 
80
  from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
81
  import re
82
 
83
+ test_dataset = load_dataset("common_voice", "pt", split="test")
84
  wer = load_metric("wer")
85
 
86
+ processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-pt")
87
+ model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-pt")
88
  model.to("cuda")
89
 
90
+ chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\'\�]'
91
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
92
 
93
  # Preprocessing the datasets.
94
  # We need to read the aduio files as arrays
95
  def speech_file_to_array_fn(batch):
96
+ batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
97
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
98
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
99
+ return batch
100
 
101
  test_dataset = test_dataset.map(speech_file_to_array_fn)
102
 
103
  # Preprocessing the datasets.
104
  # We need to read the aduio files as arrays
105
  def evaluate(batch):
106
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
107
 
108
+ with torch.no_grad():
109
+ logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
110
 
111
+ pred_ids = torch.argmax(logits, dim=-1)
112
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
113
+ return batch
114
 
115
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
116
 
117
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
118
  ```
119
 
120
+ **Test Result**: 17.22 %
 
121
 
122
  ## Training
123
 
 
126
 
127
  ```bash
128
  #!/usr/bin/env bash
129
+ python run_common_voice.py \
130
+ --model_name_or_path="facebook/wav2vec2-large-xlsr-53" \
131
+ --dataset_config_name="pt" \
132
+ --output_dir=/workspace/output_models/pt/wav2vec2-large-xlsr-pt \
133
+ --cache_dir=/workspace/data \
134
+ --overwrite_output_dir \
135
+ --num_train_epochs="30" \
136
+ --per_device_train_batch_size="32" \
137
+ --per_device_eval_batch_size="32" \
138
+ --evaluation_strategy="steps" \
139
+ --learning_rate="3e-4" \
140
+ --warmup_steps="500" \
141
+ --fp16 \
142
+ --freeze_feature_extractor \
143
+ --save_steps="500" \
144
+ --eval_steps="500" \
145
+ --save_total_limit="1" \
146
+ --logging_steps="500" \
147
+ --group_by_length \
148
+ --feat_proj_dropout="0.0" \
149
+ --layerdrop="0.1" \
150
+ --gradient_checkpointing \
151
+ --do_train --do_eval \
152
+ ```
153
+
154
+ Notebook containing the evaluation can be found [here](https://colab.research.google.com/drive/14e-zNK_5pm8EMY9EbeZerpHx7WsGycqG?usp=sharing).