---
library_name: transformers
license: agpl-3.0
base_model: vinai/phobert-base-v2
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: PhoBert_Lexical_15-10
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# PhoBert_Lexical_15-10

This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0211
- Accuracy: 0.9945
- F1: 0.9945

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Accuracy | F1     |
|:-------------:|:-------:|:-----:|:---------------:|:--------:|:------:|
| No log        | 0.1996  | 200   | 0.3681          | 0.8393   | 0.8397 |
| No log        | 0.3992  | 400   | 0.3333          | 0.8558   | 0.8563 |
| No log        | 0.5988  | 600   | 0.3128          | 0.8681   | 0.8684 |
| No log        | 0.7984  | 800   | 0.3062          | 0.8698   | 0.8703 |
| No log        | 0.9980  | 1000  | 0.2766          | 0.8822   | 0.8827 |
| 0.3857        | 1.1976  | 1200  | 0.2619          | 0.8896   | 0.8900 |
| 0.3857        | 1.3972  | 1400  | 0.2524          | 0.8939   | 0.8943 |
| 0.3857        | 1.5968  | 1600  | 0.2386          | 0.8997   | 0.9000 |
| 0.3857        | 1.7964  | 1800  | 0.2422          | 0.9013   | 0.9013 |
| 0.3857        | 1.9960  | 2000  | 0.2229          | 0.9073   | 0.9077 |
| 0.2899        | 2.1956  | 2200  | 0.2121          | 0.9135   | 0.9137 |
| 0.2899        | 2.3952  | 2400  | 0.2311          | 0.9028   | 0.9032 |
| 0.2899        | 2.5948  | 2600  | 0.2070          | 0.9163   | 0.9166 |
| 0.2899        | 2.7944  | 2800  | 0.1931          | 0.9224   | 0.9226 |
| 0.2899        | 2.9940  | 3000  | 0.1894          | 0.9236   | 0.9238 |
| 0.248         | 3.1936  | 3200  | 0.1797          | 0.9285   | 0.9287 |
| 0.248         | 3.3932  | 3400  | 0.1714          | 0.9330   | 0.9331 |
| 0.248         | 3.5928  | 3600  | 0.1628          | 0.9369   | 0.9371 |
| 0.248         | 3.7924  | 3800  | 0.1642          | 0.9353   | 0.9355 |
| 0.248         | 3.9920  | 4000  | 0.1541          | 0.9403   | 0.9405 |
| 0.2167        | 4.1916  | 4200  | 0.1430          | 0.9467   | 0.9468 |
| 0.2167        | 4.3912  | 4400  | 0.1510          | 0.9425   | 0.9427 |
| 0.2167        | 4.5908  | 4600  | 0.1509          | 0.9433   | 0.9435 |
| 0.2167        | 4.7904  | 4800  | 0.1323          | 0.9514   | 0.9515 |
| 0.2167        | 4.9900  | 5000  | 0.1248          | 0.9559   | 0.9559 |
| 0.1901        | 5.1896  | 5200  | 0.1159          | 0.9577   | 0.9577 |
| 0.1901        | 5.3892  | 5400  | 0.1123          | 0.9595   | 0.9595 |
| 0.1901        | 5.5888  | 5600  | 0.1128          | 0.9590   | 0.9591 |
| 0.1901        | 5.7884  | 5800  | 0.1016          | 0.9636   | 0.9636 |
| 0.1901        | 5.9880  | 6000  | 0.1080          | 0.9628   | 0.9629 |
| 0.1659        | 6.1876  | 6200  | 0.0910          | 0.9679   | 0.9679 |
| 0.1659        | 6.3872  | 6400  | 0.0939          | 0.9674   | 0.9675 |
| 0.1659        | 6.5868  | 6600  | 0.0948          | 0.9665   | 0.9665 |
| 0.1659        | 6.7864  | 6800  | 0.0846          | 0.9711   | 0.9711 |
| 0.1659        | 6.9860  | 7000  | 0.0866          | 0.9691   | 0.9691 |
| 0.1451        | 7.1856  | 7200  | 0.0778          | 0.9733   | 0.9734 |
| 0.1451        | 7.3852  | 7400  | 0.0823          | 0.9707   | 0.9708 |
| 0.1451        | 7.5848  | 7600  | 0.0702          | 0.9771   | 0.9772 |
| 0.1451        | 7.7844  | 7800  | 0.0684          | 0.9776   | 0.9776 |
| 0.1451        | 7.9840  | 8000  | 0.0695          | 0.9765   | 0.9766 |
| 0.128         | 8.1836  | 8200  | 0.0635          | 0.9793   | 0.9793 |
| 0.128         | 8.3832  | 8400  | 0.0586          | 0.9805   | 0.9805 |
| 0.128         | 8.5828  | 8600  | 0.0698          | 0.9747   | 0.9748 |
| 0.128         | 8.7824  | 8800  | 0.0570          | 0.9815   | 0.9815 |
| 0.128         | 8.9820  | 9000  | 0.0514          | 0.9849   | 0.9849 |
| 0.1113        | 9.1816  | 9200  | 0.0514          | 0.9836   | 0.9836 |
| 0.1113        | 9.3812  | 9400  | 0.0470          | 0.9862   | 0.9862 |
| 0.1113        | 9.5808  | 9600  | 0.0480          | 0.9850   | 0.9850 |
| 0.1113        | 9.7804  | 9800  | 0.0482          | 0.9849   | 0.9849 |
| 0.1113        | 9.9800  | 10000 | 0.0423          | 0.9872   | 0.9872 |
| 0.0969        | 10.1796 | 10200 | 0.0410          | 0.9871   | 0.9871 |
| 0.0969        | 10.3792 | 10400 | 0.0374          | 0.9887   | 0.9887 |
| 0.0969        | 10.5788 | 10600 | 0.0372          | 0.9884   | 0.9884 |
| 0.0969        | 10.7784 | 10800 | 0.0350          | 0.9903   | 0.9903 |
| 0.0969        | 10.9780 | 11000 | 0.0386          | 0.9878   | 0.9878 |
| 0.0864        | 11.1776 | 11200 | 0.0327          | 0.9908   | 0.9908 |
| 0.0864        | 11.3772 | 11400 | 0.0305          | 0.9915   | 0.9916 |
| 0.0864        | 11.5768 | 11600 | 0.0304          | 0.9916   | 0.9916 |
| 0.0864        | 11.7764 | 11800 | 0.0336          | 0.9895   | 0.9895 |
| 0.0864        | 11.9760 | 12000 | 0.0276          | 0.9925   | 0.9925 |
| 0.0734        | 12.1756 | 12200 | 0.0265          | 0.9929   | 0.9929 |
| 0.0734        | 12.3752 | 12400 | 0.0275          | 0.9924   | 0.9924 |
| 0.0734        | 12.5749 | 12600 | 0.0265          | 0.9928   | 0.9928 |
| 0.0734        | 12.7745 | 12800 | 0.0256          | 0.9927   | 0.9928 |
| 0.0734        | 12.9741 | 13000 | 0.0238          | 0.9940   | 0.9940 |
| 0.0665        | 13.1737 | 13200 | 0.0251          | 0.9929   | 0.9929 |
| 0.0665        | 13.3733 | 13400 | 0.0242          | 0.9934   | 0.9934 |
| 0.0665        | 13.5729 | 13600 | 0.0228          | 0.9942   | 0.9942 |
| 0.0665        | 13.7725 | 13800 | 0.0232          | 0.9938   | 0.9938 |
| 0.0665        | 13.9721 | 14000 | 0.0228          | 0.9940   | 0.9940 |
| 0.0623        | 14.1717 | 14200 | 0.0215          | 0.9944   | 0.9944 |
| 0.0623        | 14.3713 | 14400 | 0.0217          | 0.9943   | 0.9943 |
| 0.0623        | 14.5709 | 14600 | 0.0213          | 0.9944   | 0.9944 |
| 0.0623        | 14.7705 | 14800 | 0.0213          | 0.9944   | 0.9944 |
| 0.0623        | 14.9701 | 15000 | 0.0211          | 0.9945   | 0.9945 |


### Framework versions

- Transformers 4.45.2
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.20.1