--- base_model: gechim/metadata-cls-no-gov-8k-v3 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: PhobertLexicalMeta-v2 results: [] --- # PhobertLexicalMeta-v2 This model is a fine-tuned version of [gechim/metadata-cls-no-gov-8k-v3](https://huggingface.co/gechim/metadata-cls-no-gov-8k-v3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3926 - Accuracy: 0.9062 - F1: 0.8781 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:| | No log | 0.8772 | 100 | 0.2699 | 0.9080 | 0.8801 | | 0.1564 | 1.7544 | 200 | 0.2984 | 0.9011 | 0.8723 | | 0.073 | 2.6316 | 300 | 0.3218 | 0.8987 | 0.8705 | | 0.0502 | 3.5088 | 400 | 0.3472 | 0.8927 | 0.8641 | | 0.0326 | 4.3860 | 500 | 0.3627 | 0.8941 | 0.8635 | | 0.0285 | 5.2632 | 600 | 0.3752 | 0.8964 | 0.8685 | | 0.0179 | 6.1404 | 700 | 0.3666 | 0.9025 | 0.8734 | | 0.0156 | 7.0175 | 800 | 0.3759 | 0.9043 | 0.8748 | | 0.0156 | 7.8947 | 900 | 0.3830 | 0.9080 | 0.8788 | | 0.011 | 8.7719 | 1000 | 0.3917 | 0.9039 | 0.8746 | | 0.0092 | 9.6491 | 1100 | 0.3926 | 0.9062 | 0.8781 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1