geraldoescobar
commited on
Commit
路
52dbbac
1
Parent(s):
3bd497f
deploy
Browse files- TP_4_FINAL.ipynb +1416 -0
- Test.csv +357 -0
- Train.csv +0 -0
- __pycache__/Clases.cpython-38.pyc +0 -0
- __pycache__/fs.cpython-38.pyc +0 -0
- app.py +147 -0
- fs.py +12 -0
- mejor_modelo_tp4.pkl +3 -0
TP_4_FINAL.ipynb
ADDED
@@ -0,0 +1,1416 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"attachments": {},
|
5 |
+
"cell_type": "markdown",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"\n",
|
9 |
+
"El dataset contiene registros de sensores de smartphones de 4 actividades relacionadas con ca铆das y 9 actividades normales.\n",
|
10 |
+
"\n",
|
11 |
+
"Las que se corresponden con ca铆das son: \n",
|
12 |
+
"* FOL: Caerse hacia adelante \n",
|
13 |
+
"* FKL: Caerse de rodillas \n",
|
14 |
+
"* SDL: Caerse de costado \n",
|
15 |
+
"* BSC: Caerse de una silla \n",
|
16 |
+
"\n",
|
17 |
+
"Las actividades normales son:\n",
|
18 |
+
"* STD: Estar parado \n",
|
19 |
+
"* WAL: Caminar \n",
|
20 |
+
"* JOG: Trotar \n",
|
21 |
+
"* JUM: Saltar \n",
|
22 |
+
"* STU: Subir escaleras \n",
|
23 |
+
"* STN: Bajar escaleras \n",
|
24 |
+
"* SCH: Sentarse \n",
|
25 |
+
"* CSI: Entrar a un automovil \n",
|
26 |
+
"* CSO: Salir de un automovil \n",
|
27 |
+
"\n",
|
28 |
+
"Los registro del dataset fueron registrados por 11 individuos.\n",
|
29 |
+
"\n",
|
30 |
+
"Cada registro pertenece a una ventana temporal de 6 segundos, conteniendo \n",
|
31 |
+
"datos del aceler贸metro y del giroscopio, dando lugar a las siguientes features:\n",
|
32 |
+
"\n",
|
33 |
+
"* acc_max: dato de aceleraci贸n m谩xima del 4to segundo. \n",
|
34 |
+
"* acc_kurtosis: kurtosis de la aceleraci贸n durante los 6 segundos. \n",
|
35 |
+
"* acc_skewness: simetr铆a de la aceleraci贸n durante los 6 segundos. \n",
|
36 |
+
"* gyro_max: dato m谩ximo del giroscopio en el 4to segundo. \n",
|
37 |
+
"* gyro_kurtosis: kurtosis del giroscopio durante los 6 segundos. \n",
|
38 |
+
"* gyro_skewness: simetr铆a del giroscopio durante los 6 segundos. \n",
|
39 |
+
"* lin_max: aceleraci贸n lineal m谩xima (excluyendo la gravedad) del 4to segundo. \n",
|
40 |
+
"* post_lin_max: aceleraci贸n lineal m谩xima en el 6to segundo. \n",
|
41 |
+
"* post_gyro_max: dato m谩ximo del giroscopio en el 6to segundo. \n",
|
42 |
+
"* fall: 1 si se corresponde con una ca铆da, 0 si no. \n",
|
43 |
+
"* label: c贸digo de la actividad. \n",
|
44 |
+
"\n",
|
45 |
+
"El dataset contiene 1784 registros, habiendo 1017 que se corresponden con actividades normales y 767 que se corresponden con ca铆das."
|
46 |
+
]
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"cell_type": "code",
|
50 |
+
"execution_count": 1,
|
51 |
+
"metadata": {},
|
52 |
+
"outputs": [],
|
53 |
+
"source": [
|
54 |
+
"\n",
|
55 |
+
"import numpy as np\n",
|
56 |
+
"import pandas as pd\n",
|
57 |
+
"import seaborn as sns\n",
|
58 |
+
"from sklearn.pipeline import Pipeline\n",
|
59 |
+
"from sklearn.pipeline import make_pipeline\n",
|
60 |
+
"\n",
|
61 |
+
"from sklearn.model_selection import GridSearchCV\n",
|
62 |
+
"from sklearn.model_selection import train_test_split\n",
|
63 |
+
"from sklearn.model_selection import GridSearchCV\n",
|
64 |
+
"from sklearn.model_selection import StratifiedKFold\n",
|
65 |
+
"from sklearn.model_selection import cross_val_score\n",
|
66 |
+
"from sklearn.metrics import classification_report\n",
|
67 |
+
"from sklearn.metrics import accuracy_score\n",
|
68 |
+
"from sklearn.base import BaseEstimator, TransformerMixin\n",
|
69 |
+
"from sklearn.preprocessing import StandardScaler\n",
|
70 |
+
"from sklearn.preprocessing import MinMaxScaler\n",
|
71 |
+
"from sklearn.neighbors import KNeighborsClassifier\n",
|
72 |
+
"from sklearn.linear_model import LogisticRegression\n",
|
73 |
+
"from sklearn.ensemble import RandomForestClassifier\n",
|
74 |
+
"from sklearn.ensemble import IsolationForest\n",
|
75 |
+
"from sklearn.tree import DecisionTreeClassifier\n",
|
76 |
+
"\n",
|
77 |
+
"from imblearn import FunctionSampler\n",
|
78 |
+
"\n",
|
79 |
+
"from xgboost import XGBClassifier\n",
|
80 |
+
"import warnings\n",
|
81 |
+
"warnings.filterwarnings('ignore')\n",
|
82 |
+
"from sklearn import set_config\n",
|
83 |
+
"set_config(display=\"diagram\")\n"
|
84 |
+
]
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"cell_type": "code",
|
88 |
+
"execution_count": 2,
|
89 |
+
"metadata": {},
|
90 |
+
"outputs": [],
|
91 |
+
"source": [
|
92 |
+
"df1 = pd.read_csv('../tp_final_no_anda_la_clase_outlier/Train.csv')\n",
|
93 |
+
"df2 = pd.read_csv('../tp_final_no_anda_la_clase_outlier/Test.csv')"
|
94 |
+
]
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"cell_type": "code",
|
98 |
+
"execution_count": 3,
|
99 |
+
"metadata": {},
|
100 |
+
"outputs": [
|
101 |
+
{
|
102 |
+
"data": {
|
103 |
+
"text/plain": [
|
104 |
+
"(1428, 12)"
|
105 |
+
]
|
106 |
+
},
|
107 |
+
"execution_count": 3,
|
108 |
+
"metadata": {},
|
109 |
+
"output_type": "execute_result"
|
110 |
+
}
|
111 |
+
],
|
112 |
+
"source": [
|
113 |
+
"df1.shape"
|
114 |
+
]
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"cell_type": "code",
|
118 |
+
"execution_count": 4,
|
119 |
+
"metadata": {},
|
120 |
+
"outputs": [
|
121 |
+
{
|
122 |
+
"data": {
|
123 |
+
"text/plain": [
|
124 |
+
"(356, 12)"
|
125 |
+
]
|
126 |
+
},
|
127 |
+
"execution_count": 4,
|
128 |
+
"metadata": {},
|
129 |
+
"output_type": "execute_result"
|
130 |
+
}
|
131 |
+
],
|
132 |
+
"source": [
|
133 |
+
"df2.shape"
|
134 |
+
]
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"cell_type": "code",
|
138 |
+
"execution_count": 5,
|
139 |
+
"metadata": {},
|
140 |
+
"outputs": [],
|
141 |
+
"source": [
|
142 |
+
"df = pd.concat([df1, df2])"
|
143 |
+
]
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"cell_type": "code",
|
147 |
+
"execution_count": 6,
|
148 |
+
"metadata": {},
|
149 |
+
"outputs": [
|
150 |
+
{
|
151 |
+
"data": {
|
152 |
+
"text/plain": [
|
153 |
+
"(1784, 12)"
|
154 |
+
]
|
155 |
+
},
|
156 |
+
"execution_count": 6,
|
157 |
+
"metadata": {},
|
158 |
+
"output_type": "execute_result"
|
159 |
+
}
|
160 |
+
],
|
161 |
+
"source": [
|
162 |
+
"df.shape"
|
163 |
+
]
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"cell_type": "code",
|
167 |
+
"execution_count": 7,
|
168 |
+
"metadata": {},
|
169 |
+
"outputs": [
|
170 |
+
{
|
171 |
+
"data": {
|
172 |
+
"text/plain": [
|
173 |
+
"Unnamed: 0 0\n",
|
174 |
+
"acc_max 0\n",
|
175 |
+
"gyro_max 0\n",
|
176 |
+
"acc_kurtosis 0\n",
|
177 |
+
"gyro_kurtosis 0\n",
|
178 |
+
"label 0\n",
|
179 |
+
"lin_max 0\n",
|
180 |
+
"acc_skewness 0\n",
|
181 |
+
"gyro_skewness 0\n",
|
182 |
+
"post_gyro_max 0\n",
|
183 |
+
"post_lin_max 0\n",
|
184 |
+
"fall 0\n",
|
185 |
+
"dtype: int64"
|
186 |
+
]
|
187 |
+
},
|
188 |
+
"execution_count": 7,
|
189 |
+
"metadata": {},
|
190 |
+
"output_type": "execute_result"
|
191 |
+
}
|
192 |
+
],
|
193 |
+
"source": [
|
194 |
+
"df.isnull().sum()"
|
195 |
+
]
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"cell_type": "code",
|
199 |
+
"execution_count": 8,
|
200 |
+
"metadata": {},
|
201 |
+
"outputs": [
|
202 |
+
{
|
203 |
+
"data": {
|
204 |
+
"text/html": [
|
205 |
+
"<div>\n",
|
206 |
+
"<style scoped>\n",
|
207 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
208 |
+
" vertical-align: middle;\n",
|
209 |
+
" }\n",
|
210 |
+
"\n",
|
211 |
+
" .dataframe tbody tr th {\n",
|
212 |
+
" vertical-align: top;\n",
|
213 |
+
" }\n",
|
214 |
+
"\n",
|
215 |
+
" .dataframe thead th {\n",
|
216 |
+
" text-align: right;\n",
|
217 |
+
" }\n",
|
218 |
+
"</style>\n",
|
219 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
220 |
+
" <thead>\n",
|
221 |
+
" <tr style=\"text-align: right;\">\n",
|
222 |
+
" <th></th>\n",
|
223 |
+
" <th>Unnamed: 0</th>\n",
|
224 |
+
" <th>acc_max</th>\n",
|
225 |
+
" <th>gyro_max</th>\n",
|
226 |
+
" <th>acc_kurtosis</th>\n",
|
227 |
+
" <th>gyro_kurtosis</th>\n",
|
228 |
+
" <th>lin_max</th>\n",
|
229 |
+
" <th>acc_skewness</th>\n",
|
230 |
+
" <th>gyro_skewness</th>\n",
|
231 |
+
" <th>post_gyro_max</th>\n",
|
232 |
+
" <th>post_lin_max</th>\n",
|
233 |
+
" <th>fall</th>\n",
|
234 |
+
" </tr>\n",
|
235 |
+
" </thead>\n",
|
236 |
+
" <tbody>\n",
|
237 |
+
" <tr>\n",
|
238 |
+
" <th>count</th>\n",
|
239 |
+
" <td>1784.000000</td>\n",
|
240 |
+
" <td>1784.000000</td>\n",
|
241 |
+
" <td>1784.000000</td>\n",
|
242 |
+
" <td>1784.000000</td>\n",
|
243 |
+
" <td>1784.000000</td>\n",
|
244 |
+
" <td>1784.000000</td>\n",
|
245 |
+
" <td>1784.000000</td>\n",
|
246 |
+
" <td>1784.000000</td>\n",
|
247 |
+
" <td>1784.000000</td>\n",
|
248 |
+
" <td>1784.000000</td>\n",
|
249 |
+
" <td>1784.000000</td>\n",
|
250 |
+
" </tr>\n",
|
251 |
+
" <tr>\n",
|
252 |
+
" <th>mean</th>\n",
|
253 |
+
" <td>891.500000</td>\n",
|
254 |
+
" <td>21.768998</td>\n",
|
255 |
+
" <td>5.028728</td>\n",
|
256 |
+
" <td>10.031186</td>\n",
|
257 |
+
" <td>3.916387</td>\n",
|
258 |
+
" <td>7.976308</td>\n",
|
259 |
+
" <td>1.732918</td>\n",
|
260 |
+
" <td>1.629258</td>\n",
|
261 |
+
" <td>3.191397</td>\n",
|
262 |
+
" <td>5.228546</td>\n",
|
263 |
+
" <td>0.429933</td>\n",
|
264 |
+
" </tr>\n",
|
265 |
+
" <tr>\n",
|
266 |
+
" <th>std</th>\n",
|
267 |
+
" <td>515.140757</td>\n",
|
268 |
+
" <td>5.479980</td>\n",
|
269 |
+
" <td>2.943876</td>\n",
|
270 |
+
" <td>11.836305</td>\n",
|
271 |
+
" <td>5.489329</td>\n",
|
272 |
+
" <td>4.258842</td>\n",
|
273 |
+
" <td>1.529711</td>\n",
|
274 |
+
" <td>0.999016</td>\n",
|
275 |
+
" <td>3.429678</td>\n",
|
276 |
+
" <td>5.004165</td>\n",
|
277 |
+
" <td>0.495205</td>\n",
|
278 |
+
" </tr>\n",
|
279 |
+
" <tr>\n",
|
280 |
+
" <th>min</th>\n",
|
281 |
+
" <td>0.000000</td>\n",
|
282 |
+
" <td>9.787964</td>\n",
|
283 |
+
" <td>0.026257</td>\n",
|
284 |
+
" <td>-1.743347</td>\n",
|
285 |
+
" <td>-1.532044</td>\n",
|
286 |
+
" <td>0.043625</td>\n",
|
287 |
+
" <td>-14.066208</td>\n",
|
288 |
+
" <td>-0.460160</td>\n",
|
289 |
+
" <td>-4.984168</td>\n",
|
290 |
+
" <td>-5.382828</td>\n",
|
291 |
+
" <td>0.000000</td>\n",
|
292 |
+
" </tr>\n",
|
293 |
+
" <tr>\n",
|
294 |
+
" <th>25%</th>\n",
|
295 |
+
" <td>445.750000</td>\n",
|
296 |
+
" <td>18.751488</td>\n",
|
297 |
+
" <td>3.104216</td>\n",
|
298 |
+
" <td>0.469997</td>\n",
|
299 |
+
" <td>0.186524</td>\n",
|
300 |
+
" <td>4.832765</td>\n",
|
301 |
+
" <td>0.458187</td>\n",
|
302 |
+
" <td>0.811557</td>\n",
|
303 |
+
" <td>0.286294</td>\n",
|
304 |
+
" <td>0.907965</td>\n",
|
305 |
+
" <td>0.000000</td>\n",
|
306 |
+
" </tr>\n",
|
307 |
+
" <tr>\n",
|
308 |
+
" <th>50%</th>\n",
|
309 |
+
" <td>891.500000</td>\n",
|
310 |
+
" <td>22.924268</td>\n",
|
311 |
+
" <td>4.568088</td>\n",
|
312 |
+
" <td>8.423476</td>\n",
|
313 |
+
" <td>2.028413</td>\n",
|
314 |
+
" <td>8.282902</td>\n",
|
315 |
+
" <td>1.520431</td>\n",
|
316 |
+
" <td>1.542694</td>\n",
|
317 |
+
" <td>2.452813</td>\n",
|
318 |
+
" <td>3.727967</td>\n",
|
319 |
+
" <td>0.000000</td>\n",
|
320 |
+
" </tr>\n",
|
321 |
+
" <tr>\n",
|
322 |
+
" <th>75%</th>\n",
|
323 |
+
" <td>1337.250000</td>\n",
|
324 |
+
" <td>25.865634</td>\n",
|
325 |
+
" <td>6.428771</td>\n",
|
326 |
+
" <td>15.717815</td>\n",
|
327 |
+
" <td>5.582912</td>\n",
|
328 |
+
" <td>11.100896</td>\n",
|
329 |
+
" <td>2.912764</td>\n",
|
330 |
+
" <td>2.291739</td>\n",
|
331 |
+
" <td>5.226240</td>\n",
|
332 |
+
" <td>9.629489</td>\n",
|
333 |
+
" <td>1.000000</td>\n",
|
334 |
+
" </tr>\n",
|
335 |
+
" <tr>\n",
|
336 |
+
" <th>max</th>\n",
|
337 |
+
" <td>1783.000000</td>\n",
|
338 |
+
" <td>32.885551</td>\n",
|
339 |
+
" <td>17.288546</td>\n",
|
340 |
+
" <td>231.134385</td>\n",
|
341 |
+
" <td>34.163811</td>\n",
|
342 |
+
" <td>25.382307</td>\n",
|
343 |
+
" <td>6.782592</td>\n",
|
344 |
+
" <td>5.174101</td>\n",
|
345 |
+
" <td>16.204944</td>\n",
|
346 |
+
" <td>23.972115</td>\n",
|
347 |
+
" <td>1.000000</td>\n",
|
348 |
+
" </tr>\n",
|
349 |
+
" </tbody>\n",
|
350 |
+
"</table>\n",
|
351 |
+
"</div>"
|
352 |
+
],
|
353 |
+
"text/plain": [
|
354 |
+
" Unnamed: 0 acc_max gyro_max acc_kurtosis gyro_kurtosis \\\n",
|
355 |
+
"count 1784.000000 1784.000000 1784.000000 1784.000000 1784.000000 \n",
|
356 |
+
"mean 891.500000 21.768998 5.028728 10.031186 3.916387 \n",
|
357 |
+
"std 515.140757 5.479980 2.943876 11.836305 5.489329 \n",
|
358 |
+
"min 0.000000 9.787964 0.026257 -1.743347 -1.532044 \n",
|
359 |
+
"25% 445.750000 18.751488 3.104216 0.469997 0.186524 \n",
|
360 |
+
"50% 891.500000 22.924268 4.568088 8.423476 2.028413 \n",
|
361 |
+
"75% 1337.250000 25.865634 6.428771 15.717815 5.582912 \n",
|
362 |
+
"max 1783.000000 32.885551 17.288546 231.134385 34.163811 \n",
|
363 |
+
"\n",
|
364 |
+
" lin_max acc_skewness gyro_skewness post_gyro_max post_lin_max \\\n",
|
365 |
+
"count 1784.000000 1784.000000 1784.000000 1784.000000 1784.000000 \n",
|
366 |
+
"mean 7.976308 1.732918 1.629258 3.191397 5.228546 \n",
|
367 |
+
"std 4.258842 1.529711 0.999016 3.429678 5.004165 \n",
|
368 |
+
"min 0.043625 -14.066208 -0.460160 -4.984168 -5.382828 \n",
|
369 |
+
"25% 4.832765 0.458187 0.811557 0.286294 0.907965 \n",
|
370 |
+
"50% 8.282902 1.520431 1.542694 2.452813 3.727967 \n",
|
371 |
+
"75% 11.100896 2.912764 2.291739 5.226240 9.629489 \n",
|
372 |
+
"max 25.382307 6.782592 5.174101 16.204944 23.972115 \n",
|
373 |
+
"\n",
|
374 |
+
" fall \n",
|
375 |
+
"count 1784.000000 \n",
|
376 |
+
"mean 0.429933 \n",
|
377 |
+
"std 0.495205 \n",
|
378 |
+
"min 0.000000 \n",
|
379 |
+
"25% 0.000000 \n",
|
380 |
+
"50% 0.000000 \n",
|
381 |
+
"75% 1.000000 \n",
|
382 |
+
"max 1.000000 "
|
383 |
+
]
|
384 |
+
},
|
385 |
+
"execution_count": 8,
|
386 |
+
"metadata": {},
|
387 |
+
"output_type": "execute_result"
|
388 |
+
}
|
389 |
+
],
|
390 |
+
"source": [
|
391 |
+
"df.describe()"
|
392 |
+
]
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"cell_type": "code",
|
396 |
+
"execution_count": 9,
|
397 |
+
"metadata": {},
|
398 |
+
"outputs": [
|
399 |
+
{
|
400 |
+
"name": "stdout",
|
401 |
+
"output_type": "stream",
|
402 |
+
"text": [
|
403 |
+
"<class 'pandas.core.frame.DataFrame'>\n",
|
404 |
+
"Int64Index: 1784 entries, 0 to 355\n",
|
405 |
+
"Data columns (total 12 columns):\n",
|
406 |
+
" # Column Non-Null Count Dtype \n",
|
407 |
+
"--- ------ -------------- ----- \n",
|
408 |
+
" 0 Unnamed: 0 1784 non-null int64 \n",
|
409 |
+
" 1 acc_max 1784 non-null float64\n",
|
410 |
+
" 2 gyro_max 1784 non-null float64\n",
|
411 |
+
" 3 acc_kurtosis 1784 non-null float64\n",
|
412 |
+
" 4 gyro_kurtosis 1784 non-null float64\n",
|
413 |
+
" 5 label 1784 non-null object \n",
|
414 |
+
" 6 lin_max 1784 non-null float64\n",
|
415 |
+
" 7 acc_skewness 1784 non-null float64\n",
|
416 |
+
" 8 gyro_skewness 1784 non-null float64\n",
|
417 |
+
" 9 post_gyro_max 1784 non-null float64\n",
|
418 |
+
" 10 post_lin_max 1784 non-null float64\n",
|
419 |
+
" 11 fall 1784 non-null int64 \n",
|
420 |
+
"dtypes: float64(9), int64(2), object(1)\n",
|
421 |
+
"memory usage: 181.2+ KB\n"
|
422 |
+
]
|
423 |
+
}
|
424 |
+
],
|
425 |
+
"source": [
|
426 |
+
"df.info()"
|
427 |
+
]
|
428 |
+
},
|
429 |
+
{
|
430 |
+
"cell_type": "code",
|
431 |
+
"execution_count": 10,
|
432 |
+
"metadata": {},
|
433 |
+
"outputs": [
|
434 |
+
{
|
435 |
+
"data": {
|
436 |
+
"text/html": [
|
437 |
+
"<div>\n",
|
438 |
+
"<style scoped>\n",
|
439 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
440 |
+
" vertical-align: middle;\n",
|
441 |
+
" }\n",
|
442 |
+
"\n",
|
443 |
+
" .dataframe tbody tr th {\n",
|
444 |
+
" vertical-align: top;\n",
|
445 |
+
" }\n",
|
446 |
+
"\n",
|
447 |
+
" .dataframe thead th {\n",
|
448 |
+
" text-align: right;\n",
|
449 |
+
" }\n",
|
450 |
+
"</style>\n",
|
451 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
452 |
+
" <thead>\n",
|
453 |
+
" <tr style=\"text-align: right;\">\n",
|
454 |
+
" <th></th>\n",
|
455 |
+
" <th>Unnamed: 0</th>\n",
|
456 |
+
" <th>acc_max</th>\n",
|
457 |
+
" <th>gyro_max</th>\n",
|
458 |
+
" <th>acc_kurtosis</th>\n",
|
459 |
+
" <th>gyro_kurtosis</th>\n",
|
460 |
+
" <th>label</th>\n",
|
461 |
+
" <th>lin_max</th>\n",
|
462 |
+
" <th>acc_skewness</th>\n",
|
463 |
+
" <th>gyro_skewness</th>\n",
|
464 |
+
" <th>post_gyro_max</th>\n",
|
465 |
+
" <th>post_lin_max</th>\n",
|
466 |
+
" <th>fall</th>\n",
|
467 |
+
" </tr>\n",
|
468 |
+
" </thead>\n",
|
469 |
+
" <tbody>\n",
|
470 |
+
" <tr>\n",
|
471 |
+
" <th>1044</th>\n",
|
472 |
+
" <td>879</td>\n",
|
473 |
+
" <td>22.960623</td>\n",
|
474 |
+
" <td>6.481883</td>\n",
|
475 |
+
" <td>4.701671</td>\n",
|
476 |
+
" <td>2.504065</td>\n",
|
477 |
+
" <td>CSI</td>\n",
|
478 |
+
" <td>12.424865</td>\n",
|
479 |
+
" <td>1.209656</td>\n",
|
480 |
+
" <td>1.738483</td>\n",
|
481 |
+
" <td>4.721564</td>\n",
|
482 |
+
" <td>10.974288</td>\n",
|
483 |
+
" <td>0</td>\n",
|
484 |
+
" </tr>\n",
|
485 |
+
" </tbody>\n",
|
486 |
+
"</table>\n",
|
487 |
+
"</div>"
|
488 |
+
],
|
489 |
+
"text/plain": [
|
490 |
+
" Unnamed: 0 acc_max gyro_max acc_kurtosis gyro_kurtosis label \\\n",
|
491 |
+
"1044 879 22.960623 6.481883 4.701671 2.504065 CSI \n",
|
492 |
+
"\n",
|
493 |
+
" lin_max acc_skewness gyro_skewness post_gyro_max post_lin_max \\\n",
|
494 |
+
"1044 12.424865 1.209656 1.738483 4.721564 10.974288 \n",
|
495 |
+
"\n",
|
496 |
+
" fall \n",
|
497 |
+
"1044 0 "
|
498 |
+
]
|
499 |
+
},
|
500 |
+
"execution_count": 10,
|
501 |
+
"metadata": {},
|
502 |
+
"output_type": "execute_result"
|
503 |
+
}
|
504 |
+
],
|
505 |
+
"source": [
|
506 |
+
"df.sample()"
|
507 |
+
]
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"cell_type": "code",
|
511 |
+
"execution_count": 11,
|
512 |
+
"metadata": {},
|
513 |
+
"outputs": [
|
514 |
+
{
|
515 |
+
"data": {
|
516 |
+
"text/plain": [
|
517 |
+
"(1784, 12)"
|
518 |
+
]
|
519 |
+
},
|
520 |
+
"execution_count": 11,
|
521 |
+
"metadata": {},
|
522 |
+
"output_type": "execute_result"
|
523 |
+
}
|
524 |
+
],
|
525 |
+
"source": [
|
526 |
+
"df.shape"
|
527 |
+
]
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"cell_type": "code",
|
531 |
+
"execution_count": 12,
|
532 |
+
"metadata": {},
|
533 |
+
"outputs": [
|
534 |
+
{
|
535 |
+
"data": {
|
536 |
+
"text/plain": [
|
537 |
+
"1.0"
|
538 |
+
]
|
539 |
+
},
|
540 |
+
"execution_count": 12,
|
541 |
+
"metadata": {},
|
542 |
+
"output_type": "execute_result"
|
543 |
+
}
|
544 |
+
],
|
545 |
+
"source": [
|
546 |
+
"df['Unnamed: 0'].value_counts().mean() #ac谩 vemos que cada valor de esta columna aparece una sola vez, por lo que es un 铆ndice. \n",
|
547 |
+
"#ser谩 dropeada"
|
548 |
+
]
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"cell_type": "code",
|
552 |
+
"execution_count": 13,
|
553 |
+
"metadata": {},
|
554 |
+
"outputs": [
|
555 |
+
{
|
556 |
+
"data": {
|
557 |
+
"text/plain": [
|
558 |
+
"FOL 192\n",
|
559 |
+
"SDL 192\n",
|
560 |
+
"FKL 192\n",
|
561 |
+
"BSC 191\n",
|
562 |
+
"CSO 113\n",
|
563 |
+
"STD 113\n",
|
564 |
+
"SCH 113\n",
|
565 |
+
"STU 113\n",
|
566 |
+
"CSI 113\n",
|
567 |
+
"STN 113\n",
|
568 |
+
"JUM 113\n",
|
569 |
+
"WAL 113\n",
|
570 |
+
"JOG 113\n",
|
571 |
+
"Name: label, dtype: int64"
|
572 |
+
]
|
573 |
+
},
|
574 |
+
"execution_count": 13,
|
575 |
+
"metadata": {},
|
576 |
+
"output_type": "execute_result"
|
577 |
+
}
|
578 |
+
],
|
579 |
+
"source": [
|
580 |
+
"df['label'].value_counts()"
|
581 |
+
]
|
582 |
+
},
|
583 |
+
{
|
584 |
+
"cell_type": "code",
|
585 |
+
"execution_count": 14,
|
586 |
+
"metadata": {},
|
587 |
+
"outputs": [
|
588 |
+
{
|
589 |
+
"data": {
|
590 |
+
"text/plain": [
|
591 |
+
"0 1017\n",
|
592 |
+
"1 767\n",
|
593 |
+
"Name: fall, dtype: int64"
|
594 |
+
]
|
595 |
+
},
|
596 |
+
"execution_count": 14,
|
597 |
+
"metadata": {},
|
598 |
+
"output_type": "execute_result"
|
599 |
+
}
|
600 |
+
],
|
601 |
+
"source": [
|
602 |
+
"df['fall'].value_counts()"
|
603 |
+
]
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"cell_type": "code",
|
607 |
+
"execution_count": 15,
|
608 |
+
"metadata": {},
|
609 |
+
"outputs": [
|
610 |
+
{
|
611 |
+
"data": {
|
612 |
+
"text/html": [
|
613 |
+
"<div>\n",
|
614 |
+
"<style scoped>\n",
|
615 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
616 |
+
" vertical-align: middle;\n",
|
617 |
+
" }\n",
|
618 |
+
"\n",
|
619 |
+
" .dataframe tbody tr th {\n",
|
620 |
+
" vertical-align: top;\n",
|
621 |
+
" }\n",
|
622 |
+
"\n",
|
623 |
+
" .dataframe thead th {\n",
|
624 |
+
" text-align: right;\n",
|
625 |
+
" }\n",
|
626 |
+
"</style>\n",
|
627 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
628 |
+
" <thead>\n",
|
629 |
+
" <tr style=\"text-align: right;\">\n",
|
630 |
+
" <th></th>\n",
|
631 |
+
" <th>fall</th>\n",
|
632 |
+
" </tr>\n",
|
633 |
+
" <tr>\n",
|
634 |
+
" <th>label</th>\n",
|
635 |
+
" <th></th>\n",
|
636 |
+
" </tr>\n",
|
637 |
+
" </thead>\n",
|
638 |
+
" <tbody>\n",
|
639 |
+
" <tr>\n",
|
640 |
+
" <th>BSC</th>\n",
|
641 |
+
" <td>1</td>\n",
|
642 |
+
" </tr>\n",
|
643 |
+
" <tr>\n",
|
644 |
+
" <th>CSI</th>\n",
|
645 |
+
" <td>0</td>\n",
|
646 |
+
" </tr>\n",
|
647 |
+
" <tr>\n",
|
648 |
+
" <th>CSO</th>\n",
|
649 |
+
" <td>0</td>\n",
|
650 |
+
" </tr>\n",
|
651 |
+
" <tr>\n",
|
652 |
+
" <th>FKL</th>\n",
|
653 |
+
" <td>1</td>\n",
|
654 |
+
" </tr>\n",
|
655 |
+
" <tr>\n",
|
656 |
+
" <th>FOL</th>\n",
|
657 |
+
" <td>1</td>\n",
|
658 |
+
" </tr>\n",
|
659 |
+
" <tr>\n",
|
660 |
+
" <th>JOG</th>\n",
|
661 |
+
" <td>0</td>\n",
|
662 |
+
" </tr>\n",
|
663 |
+
" <tr>\n",
|
664 |
+
" <th>JUM</th>\n",
|
665 |
+
" <td>0</td>\n",
|
666 |
+
" </tr>\n",
|
667 |
+
" <tr>\n",
|
668 |
+
" <th>SCH</th>\n",
|
669 |
+
" <td>0</td>\n",
|
670 |
+
" </tr>\n",
|
671 |
+
" <tr>\n",
|
672 |
+
" <th>SDL</th>\n",
|
673 |
+
" <td>1</td>\n",
|
674 |
+
" </tr>\n",
|
675 |
+
" <tr>\n",
|
676 |
+
" <th>STD</th>\n",
|
677 |
+
" <td>0</td>\n",
|
678 |
+
" </tr>\n",
|
679 |
+
" <tr>\n",
|
680 |
+
" <th>STN</th>\n",
|
681 |
+
" <td>0</td>\n",
|
682 |
+
" </tr>\n",
|
683 |
+
" <tr>\n",
|
684 |
+
" <th>STU</th>\n",
|
685 |
+
" <td>0</td>\n",
|
686 |
+
" </tr>\n",
|
687 |
+
" <tr>\n",
|
688 |
+
" <th>WAL</th>\n",
|
689 |
+
" <td>0</td>\n",
|
690 |
+
" </tr>\n",
|
691 |
+
" </tbody>\n",
|
692 |
+
"</table>\n",
|
693 |
+
"</div>"
|
694 |
+
],
|
695 |
+
"text/plain": [
|
696 |
+
" fall\n",
|
697 |
+
"label \n",
|
698 |
+
"BSC 1\n",
|
699 |
+
"CSI 0\n",
|
700 |
+
"CSO 0\n",
|
701 |
+
"FKL 1\n",
|
702 |
+
"FOL 1\n",
|
703 |
+
"JOG 0\n",
|
704 |
+
"JUM 0\n",
|
705 |
+
"SCH 0\n",
|
706 |
+
"SDL 1\n",
|
707 |
+
"STD 0\n",
|
708 |
+
"STN 0\n",
|
709 |
+
"STU 0\n",
|
710 |
+
"WAL 0"
|
711 |
+
]
|
712 |
+
},
|
713 |
+
"execution_count": 15,
|
714 |
+
"metadata": {},
|
715 |
+
"output_type": "execute_result"
|
716 |
+
}
|
717 |
+
],
|
718 |
+
"source": [
|
719 |
+
"# ac谩 vemos que las categor铆as 'BSC', 'FKL', 'FOL', y 'STD' se corresponden al valor '1' de la columna 'fall' por lo que representan ca铆das, \n",
|
720 |
+
"# mientras que el resto de las categorias se corresponden con el valor '0' por lo que representan movimientos que no son ca铆das\n",
|
721 |
+
"grouped = df.groupby('label').agg({'fall': 'mean'}) \n",
|
722 |
+
"grouped"
|
723 |
+
]
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"cell_type": "code",
|
727 |
+
"execution_count": 16,
|
728 |
+
"metadata": {},
|
729 |
+
"outputs": [],
|
730 |
+
"source": [
|
731 |
+
"#ac谩 confirmamos que los que no corresponden a ca铆das coinciden en cantidad con los \"0\" de la categor铆a a predecir\n",
|
732 |
+
"#df.loc[df['label'].isin(grupo[grupo < 120].index.tolist())]['label'].value_counts().sum() == df['fall'].value_counts()[0]"
|
733 |
+
]
|
734 |
+
},
|
735 |
+
{
|
736 |
+
"cell_type": "code",
|
737 |
+
"execution_count": 17,
|
738 |
+
"metadata": {},
|
739 |
+
"outputs": [],
|
740 |
+
"source": [
|
741 |
+
"corr_matrix = df.corr() #vamos a ver como correlacionan entre si las features"
|
742 |
+
]
|
743 |
+
},
|
744 |
+
{
|
745 |
+
"cell_type": "code",
|
746 |
+
"execution_count": 18,
|
747 |
+
"metadata": {},
|
748 |
+
"outputs": [],
|
749 |
+
"source": [
|
750 |
+
"#fig, ax = plt.subplots(figsize=(10, 6))\n",
|
751 |
+
"#sns.heatmap(corr_matrix, cmap=\"Blues\", annot=True)"
|
752 |
+
]
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"cell_type": "code",
|
756 |
+
"execution_count": 19,
|
757 |
+
"metadata": {},
|
758 |
+
"outputs": [
|
759 |
+
{
|
760 |
+
"data": {
|
761 |
+
"text/plain": [
|
762 |
+
"fall 1.000000\n",
|
763 |
+
"post_lin_max 0.864964\n",
|
764 |
+
"post_gyro_max 0.765410\n",
|
765 |
+
"acc_skewness 0.713811\n",
|
766 |
+
"gyro_skewness 0.685179\n",
|
767 |
+
"acc_max 0.609653\n",
|
768 |
+
"lin_max 0.581044\n",
|
769 |
+
"gyro_kurtosis 0.550182\n",
|
770 |
+
"acc_kurtosis 0.547179\n",
|
771 |
+
"gyro_max 0.468947\n",
|
772 |
+
"Unnamed: 0 -0.857480\n",
|
773 |
+
"Name: fall, dtype: float64"
|
774 |
+
]
|
775 |
+
},
|
776 |
+
"execution_count": 19,
|
777 |
+
"metadata": {},
|
778 |
+
"output_type": "execute_result"
|
779 |
+
}
|
780 |
+
],
|
781 |
+
"source": [
|
782 |
+
"corr_matrix['fall'].sort_values(ascending = False) #ordenamos de mayor a menor las correlaciones con 'fall'"
|
783 |
+
]
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"cell_type": "code",
|
787 |
+
"execution_count": 20,
|
788 |
+
"metadata": {},
|
789 |
+
"outputs": [
|
790 |
+
{
|
791 |
+
"data": {
|
792 |
+
"text/plain": [
|
793 |
+
"Unnamed: 0 -0.857480\n",
|
794 |
+
"gyro_max 0.468947\n",
|
795 |
+
"Name: fall, dtype: float64"
|
796 |
+
]
|
797 |
+
},
|
798 |
+
"execution_count": 20,
|
799 |
+
"metadata": {},
|
800 |
+
"output_type": "execute_result"
|
801 |
+
}
|
802 |
+
],
|
803 |
+
"source": [
|
804 |
+
"corr_matrix['fall'][corr_matrix['fall'] < 0.5] # aca vemos que 'gyro_max' correlaciona poco con 'fall'"
|
805 |
+
]
|
806 |
+
},
|
807 |
+
{
|
808 |
+
"cell_type": "code",
|
809 |
+
"execution_count": 21,
|
810 |
+
"metadata": {},
|
811 |
+
"outputs": [
|
812 |
+
{
|
813 |
+
"data": {
|
814 |
+
"text/plain": [
|
815 |
+
"Index(['Unnamed: 0', 'acc_max', 'gyro_max', 'acc_kurtosis', 'gyro_kurtosis',\n",
|
816 |
+
" 'label', 'lin_max', 'acc_skewness', 'gyro_skewness', 'post_gyro_max',\n",
|
817 |
+
" 'post_lin_max', 'fall'],\n",
|
818 |
+
" dtype='object')"
|
819 |
+
]
|
820 |
+
},
|
821 |
+
"execution_count": 21,
|
822 |
+
"metadata": {},
|
823 |
+
"output_type": "execute_result"
|
824 |
+
}
|
825 |
+
],
|
826 |
+
"source": [
|
827 |
+
"df.columns"
|
828 |
+
]
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"attachments": {},
|
832 |
+
"cell_type": "markdown",
|
833 |
+
"metadata": {},
|
834 |
+
"source": [
|
835 |
+
"Entocnes como las columnas \"Unnamed: 0', 'gyro_max', y 'label' son innecesarioas, usamos una clase para preprocesar los datos que elimine estas columnas del dataframe"
|
836 |
+
]
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"cell_type": "code",
|
840 |
+
"execution_count": 22,
|
841 |
+
"metadata": {},
|
842 |
+
"outputs": [],
|
843 |
+
"source": [
|
844 |
+
"class FeatureSelection(BaseEstimator, TransformerMixin):\n",
|
845 |
+
"\n",
|
846 |
+
" def __init__(self,selected_features):\n",
|
847 |
+
" self.selected_features=selected_features\n",
|
848 |
+
" \n",
|
849 |
+
" def fit(self,X,y=None):\n",
|
850 |
+
" return self\n",
|
851 |
+
"\n",
|
852 |
+
" def transform(self, X, y=None):\n",
|
853 |
+
" return X[self.selected_features]"
|
854 |
+
]
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"cell_type": "code",
|
858 |
+
"execution_count": 23,
|
859 |
+
"metadata": {},
|
860 |
+
"outputs": [],
|
861 |
+
"source": [
|
862 |
+
"class OutlierRemover(BaseEstimator, TransformerMixin):\n",
|
863 |
+
" \n",
|
864 |
+
" def __init__(self, n_std=3):\n",
|
865 |
+
" self.n_std = n_std\n",
|
866 |
+
" \n",
|
867 |
+
" def fit(self, X, y = None):\n",
|
868 |
+
" self.mean_ = np.mean(X, axis=0)\n",
|
869 |
+
" self.std_ = np.std(X, axis=0)\n",
|
870 |
+
" return self\n",
|
871 |
+
" \n",
|
872 |
+
" def transform(self, X, y):\n",
|
873 |
+
" print(y)\n",
|
874 |
+
" \n",
|
875 |
+
" # Filtrar las filas que no contienen valores at铆picos\n",
|
876 |
+
" limite_inferior = self.mean_ - self.n_std * self.std_\n",
|
877 |
+
" limite_superior = self.mean_ + self.n_std * self.std_\n",
|
878 |
+
" mask = np.all((X > limite_inferior) & (X < limite_superior), axis=1)\n",
|
879 |
+
" \n",
|
880 |
+
" X_filtrado = X[mask]\n",
|
881 |
+
" y = y[mask]\n",
|
882 |
+
" return X_filtrado, y\n",
|
883 |
+
" \n",
|
884 |
+
" def fit_transform(self, X, y=None, **fit_params):\n",
|
885 |
+
" return self.fit(X, y).transform(X, y)"
|
886 |
+
]
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"cell_type": "code",
|
890 |
+
"execution_count": 24,
|
891 |
+
"metadata": {},
|
892 |
+
"outputs": [
|
893 |
+
{
|
894 |
+
"data": {
|
895 |
+
"text/plain": [
|
896 |
+
"(1427, 11)"
|
897 |
+
]
|
898 |
+
},
|
899 |
+
"metadata": {},
|
900 |
+
"output_type": "display_data"
|
901 |
+
},
|
902 |
+
{
|
903 |
+
"data": {
|
904 |
+
"text/plain": [
|
905 |
+
"(357, 11)"
|
906 |
+
]
|
907 |
+
},
|
908 |
+
"metadata": {},
|
909 |
+
"output_type": "display_data"
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"data": {
|
913 |
+
"text/plain": [
|
914 |
+
"(1427,)"
|
915 |
+
]
|
916 |
+
},
|
917 |
+
"metadata": {},
|
918 |
+
"output_type": "display_data"
|
919 |
+
},
|
920 |
+
{
|
921 |
+
"data": {
|
922 |
+
"text/plain": [
|
923 |
+
"(357,)"
|
924 |
+
]
|
925 |
+
},
|
926 |
+
"metadata": {},
|
927 |
+
"output_type": "display_data"
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"data": {
|
931 |
+
"text/plain": [
|
932 |
+
"pandas.core.frame.DataFrame"
|
933 |
+
]
|
934 |
+
},
|
935 |
+
"metadata": {},
|
936 |
+
"output_type": "display_data"
|
937 |
+
},
|
938 |
+
{
|
939 |
+
"data": {
|
940 |
+
"text/plain": [
|
941 |
+
"pandas.core.frame.DataFrame"
|
942 |
+
]
|
943 |
+
},
|
944 |
+
"metadata": {},
|
945 |
+
"output_type": "display_data"
|
946 |
+
},
|
947 |
+
{
|
948 |
+
"data": {
|
949 |
+
"text/plain": [
|
950 |
+
"pandas.core.series.Series"
|
951 |
+
]
|
952 |
+
},
|
953 |
+
"metadata": {},
|
954 |
+
"output_type": "display_data"
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"data": {
|
958 |
+
"text/plain": [
|
959 |
+
"pandas.core.series.Series"
|
960 |
+
]
|
961 |
+
},
|
962 |
+
"metadata": {},
|
963 |
+
"output_type": "display_data"
|
964 |
+
}
|
965 |
+
],
|
966 |
+
"source": [
|
967 |
+
"# Separamos las variables independientes de la target\n",
|
968 |
+
"X=df.drop(columns=['fall'])\n",
|
969 |
+
"y=df['fall']\n",
|
970 |
+
"\n",
|
971 |
+
"# Dividimos los datos en el set de train y el de test: \n",
|
972 |
+
"X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2, random_state=100, stratify=y)\n",
|
973 |
+
"display(X_train.shape, X_test.shape, y_train.shape, y_test.shape)\n",
|
974 |
+
"display(type(X_train), type(X_test), type(y_train), type(y_test))"
|
975 |
+
]
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"cell_type": "code",
|
979 |
+
"execution_count": 25,
|
980 |
+
"metadata": {},
|
981 |
+
"outputs": [
|
982 |
+
{
|
983 |
+
"data": {
|
984 |
+
"text/html": [
|
985 |
+
"<div>\n",
|
986 |
+
"<style scoped>\n",
|
987 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
988 |
+
" vertical-align: middle;\n",
|
989 |
+
" }\n",
|
990 |
+
"\n",
|
991 |
+
" .dataframe tbody tr th {\n",
|
992 |
+
" vertical-align: top;\n",
|
993 |
+
" }\n",
|
994 |
+
"\n",
|
995 |
+
" .dataframe thead th {\n",
|
996 |
+
" text-align: right;\n",
|
997 |
+
" }\n",
|
998 |
+
"</style>\n",
|
999 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
1000 |
+
" <thead>\n",
|
1001 |
+
" <tr style=\"text-align: right;\">\n",
|
1002 |
+
" <th></th>\n",
|
1003 |
+
" <th>Unnamed: 0</th>\n",
|
1004 |
+
" <th>acc_max</th>\n",
|
1005 |
+
" <th>gyro_max</th>\n",
|
1006 |
+
" <th>acc_kurtosis</th>\n",
|
1007 |
+
" <th>gyro_kurtosis</th>\n",
|
1008 |
+
" <th>label</th>\n",
|
1009 |
+
" <th>lin_max</th>\n",
|
1010 |
+
" <th>acc_skewness</th>\n",
|
1011 |
+
" <th>gyro_skewness</th>\n",
|
1012 |
+
" <th>post_gyro_max</th>\n",
|
1013 |
+
" <th>post_lin_max</th>\n",
|
1014 |
+
" </tr>\n",
|
1015 |
+
" </thead>\n",
|
1016 |
+
" <tbody>\n",
|
1017 |
+
" <tr>\n",
|
1018 |
+
" <th>765</th>\n",
|
1019 |
+
" <td>931</td>\n",
|
1020 |
+
" <td>17.310921</td>\n",
|
1021 |
+
" <td>5.78264</td>\n",
|
1022 |
+
" <td>5.979438</td>\n",
|
1023 |
+
" <td>-0.16566</td>\n",
|
1024 |
+
" <td>CSO</td>\n",
|
1025 |
+
" <td>4.717529</td>\n",
|
1026 |
+
" <td>1.367272</td>\n",
|
1027 |
+
" <td>0.811601</td>\n",
|
1028 |
+
" <td>5.699724</td>\n",
|
1029 |
+
" <td>4.569499</td>\n",
|
1030 |
+
" </tr>\n",
|
1031 |
+
" </tbody>\n",
|
1032 |
+
"</table>\n",
|
1033 |
+
"</div>"
|
1034 |
+
],
|
1035 |
+
"text/plain": [
|
1036 |
+
" Unnamed: 0 acc_max gyro_max acc_kurtosis gyro_kurtosis label \\\n",
|
1037 |
+
"765 931 17.310921 5.78264 5.979438 -0.16566 CSO \n",
|
1038 |
+
"\n",
|
1039 |
+
" lin_max acc_skewness gyro_skewness post_gyro_max post_lin_max \n",
|
1040 |
+
"765 4.717529 1.367272 0.811601 5.699724 4.569499 "
|
1041 |
+
]
|
1042 |
+
},
|
1043 |
+
"execution_count": 25,
|
1044 |
+
"metadata": {},
|
1045 |
+
"output_type": "execute_result"
|
1046 |
+
}
|
1047 |
+
],
|
1048 |
+
"source": [
|
1049 |
+
"X_train.sample()"
|
1050 |
+
]
|
1051 |
+
},
|
1052 |
+
{
|
1053 |
+
"cell_type": "code",
|
1054 |
+
"execution_count": 26,
|
1055 |
+
"metadata": {},
|
1056 |
+
"outputs": [],
|
1057 |
+
"source": [
|
1058 |
+
"folds = StratifiedKFold(n_splits=5, shuffle=True, random_state=0) #preparo el cross validation"
|
1059 |
+
]
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"cell_type": "code",
|
1063 |
+
"execution_count": 27,
|
1064 |
+
"metadata": {},
|
1065 |
+
"outputs": [],
|
1066 |
+
"source": [
|
1067 |
+
"#le pongo estos pasos x defecto al pipeline\n",
|
1068 |
+
"pipeline = Pipeline([('FeatureSelection', FeatureSelection(['acc_max', 'acc_kurtosis', 'gyro_kurtosis',\n",
|
1069 |
+
" 'lin_max', 'acc_skewness', 'gyro_skewness', 'post_gyro_max', 'post_lin_max'])), \n",
|
1070 |
+
"# ('OutlierRemover', OutlierRemover()),\n",
|
1071 |
+
" ('scaler', StandardScaler()), \n",
|
1072 |
+
" ('model', LogisticRegression())], verbose = False) \n"
|
1073 |
+
]
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"cell_type": "code",
|
1077 |
+
"execution_count": 28,
|
1078 |
+
"metadata": {},
|
1079 |
+
"outputs": [],
|
1080 |
+
"source": [
|
1081 |
+
"# pipeline.steps[0][1].fit_transform(X_train, y_train)"
|
1082 |
+
]
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"cell_type": "code",
|
1086 |
+
"execution_count": 29,
|
1087 |
+
"metadata": {},
|
1088 |
+
"outputs": [],
|
1089 |
+
"source": [
|
1090 |
+
"# en esta lista de diccionarios pongo las cosas que quiero que pruebe el CV\n",
|
1091 |
+
"# en el pipe vamos a probar 4 modelos con varios hiperpar谩metros\n",
|
1092 |
+
"param_grid = [ {'model': [KNeighborsClassifier()], \"model__n_neighbors\": [2, 3, 4, 5, 6, 7, 8], 'model__weights' : ['uniform', 'distance'], 'scaler' : [StandardScaler(), MinMaxScaler(), None]}, \n",
|
1093 |
+
" {'model': [LogisticRegression()], 'model__C': [0.01, 0.1, 1, 10, 100, 1000], 'model__penalty': ['l2', None], 'scaler' : [StandardScaler(), MinMaxScaler(), None]} ,\n",
|
1094 |
+
" {'model': [RandomForestClassifier()], 'model__criterion': ['gini', 'entropy'], 'scaler' : [StandardScaler(), MinMaxScaler(), None]},\n",
|
1095 |
+
" {'model': [XGBClassifier(objective='binary:logistic', eval_metric='logloss')], 'model__learning_rate': [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2], 'scaler' : [StandardScaler(), MinMaxScaler(), None] }\n",
|
1096 |
+
" ]"
|
1097 |
+
]
|
1098 |
+
},
|
1099 |
+
{
|
1100 |
+
"cell_type": "code",
|
1101 |
+
"execution_count": 30,
|
1102 |
+
"metadata": {},
|
1103 |
+
"outputs": [],
|
1104 |
+
"source": [
|
1105 |
+
"grid = GridSearchCV(pipeline, param_grid, cv=folds)"
|
1106 |
+
]
|
1107 |
+
},
|
1108 |
+
{
|
1109 |
+
"cell_type": "code",
|
1110 |
+
"execution_count": 31,
|
1111 |
+
"metadata": {},
|
1112 |
+
"outputs": [
|
1113 |
+
{
|
1114 |
+
"data": {
|
1115 |
+
"text/html": [
|
1116 |
+
"<style>div.sk-top-container {color: black;background-color: white;}div.sk-toggleable {background-color: white;}label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.2em 0.3em;box-sizing: border-box;text-align: center;}div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}div.sk-estimator {font-family: monospace;background-color: #f0f8ff;margin: 0.25em 0.25em;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;}div.sk-estimator:hover {background-color: #d4ebff;}div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;}div.sk-item {z-index: 1;}div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}div.sk-parallel-item:only-child::after {width: 0;}div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0.2em;box-sizing: border-box;padding-bottom: 0.1em;background-color: white;position: relative;}div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}div.sk-label-container {position: relative;z-index: 2;text-align: center;}div.sk-container {display: inline-block;position: relative;}</style><div class=\"sk-top-container\"><div class=\"sk-container\"><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"484012e9-2376-4ea2-ae1f-88c9569a5cd9\" type=\"checkbox\" ><label class=\"sk-toggleable__label\" for=\"484012e9-2376-4ea2-ae1f-88c9569a5cd9\">GridSearchCV</label><div class=\"sk-toggleable__content\"><pre>GridSearchCV(cv=StratifiedKFold(n_splits=5, random_state=0, shuffle=True),\n",
|
1117 |
+
" estimator=Pipeline(steps=[('FeatureSelection',\n",
|
1118 |
+
" FeatureSelection(selected_features=['acc_max',\n",
|
1119 |
+
" 'acc_kurtosis',\n",
|
1120 |
+
" 'gyro_kurtosis',\n",
|
1121 |
+
" 'lin_max',\n",
|
1122 |
+
" 'acc_skewness',\n",
|
1123 |
+
" 'gyro_skewness',\n",
|
1124 |
+
" 'post_gyro_max',\n",
|
1125 |
+
" 'post_lin_max'])),\n",
|
1126 |
+
" ('scaler', StandardScaler()),\n",
|
1127 |
+
" ('model', LogisticRegression())]),\n",
|
1128 |
+
" param_grid=[{'model...\n",
|
1129 |
+
" missing=nan,\n",
|
1130 |
+
" monotone_constraints=None,\n",
|
1131 |
+
" n_estimators=100, n_jobs=None,\n",
|
1132 |
+
" num_parallel_tree=None,\n",
|
1133 |
+
" random_state=None,\n",
|
1134 |
+
" reg_alpha=None,\n",
|
1135 |
+
" reg_lambda=None,\n",
|
1136 |
+
" scale_pos_weight=None,\n",
|
1137 |
+
" subsample=None,\n",
|
1138 |
+
" tree_method=None,\n",
|
1139 |
+
" validate_parameters=None,\n",
|
1140 |
+
" verbosity=None)],\n",
|
1141 |
+
" 'model__learning_rate': [0.2, 0.3, 0.4, 0.5, 0.6, 0.7,\n",
|
1142 |
+
" 0.8, 0.9, 1, 1.1, 1.2],\n",
|
1143 |
+
" 'scaler': [StandardScaler(), MinMaxScaler(), None]}])</pre></div></div></div><div class=\"sk-parallel\"><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"a5d56b68-499d-4387-b7cd-4b1c5fa5176e\" type=\"checkbox\" ><label class=\"sk-toggleable__label\" for=\"a5d56b68-499d-4387-b7cd-4b1c5fa5176e\">FeatureSelection</label><div class=\"sk-toggleable__content\"><pre>FeatureSelection(selected_features=['acc_max', 'acc_kurtosis', 'gyro_kurtosis',\n",
|
1144 |
+
" 'lin_max', 'acc_skewness', 'gyro_skewness',\n",
|
1145 |
+
" 'post_gyro_max', 'post_lin_max'])</pre></div></div></div><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"c03eadc0-04c3-4a2f-b996-b40a444633f1\" type=\"checkbox\" ><label class=\"sk-toggleable__label\" for=\"c03eadc0-04c3-4a2f-b996-b40a444633f1\">StandardScaler</label><div class=\"sk-toggleable__content\"><pre>StandardScaler()</pre></div></div></div><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"fdb7ff8f-c74e-4082-831e-cf7ce9689a15\" type=\"checkbox\" ><label class=\"sk-toggleable__label\" for=\"fdb7ff8f-c74e-4082-831e-cf7ce9689a15\">LogisticRegression</label><div class=\"sk-toggleable__content\"><pre>LogisticRegression()</pre></div></div></div></div></div></div></div></div></div></div></div></div>"
|
1146 |
+
],
|
1147 |
+
"text/plain": [
|
1148 |
+
"GridSearchCV(cv=StratifiedKFold(n_splits=5, random_state=0, shuffle=True),\n",
|
1149 |
+
" estimator=Pipeline(steps=[('FeatureSelection',\n",
|
1150 |
+
" FeatureSelection(selected_features=['acc_max',\n",
|
1151 |
+
" 'acc_kurtosis',\n",
|
1152 |
+
" 'gyro_kurtosis',\n",
|
1153 |
+
" 'lin_max',\n",
|
1154 |
+
" 'acc_skewness',\n",
|
1155 |
+
" 'gyro_skewness',\n",
|
1156 |
+
" 'post_gyro_max',\n",
|
1157 |
+
" 'post_lin_max'])),\n",
|
1158 |
+
" ('scaler', StandardScaler()),\n",
|
1159 |
+
" ('model', LogisticRegression())]),\n",
|
1160 |
+
" param_grid=[{'model...\n",
|
1161 |
+
" missing=nan,\n",
|
1162 |
+
" monotone_constraints=None,\n",
|
1163 |
+
" n_estimators=100, n_jobs=None,\n",
|
1164 |
+
" num_parallel_tree=None,\n",
|
1165 |
+
" random_state=None,\n",
|
1166 |
+
" reg_alpha=None,\n",
|
1167 |
+
" reg_lambda=None,\n",
|
1168 |
+
" scale_pos_weight=None,\n",
|
1169 |
+
" subsample=None,\n",
|
1170 |
+
" tree_method=None,\n",
|
1171 |
+
" validate_parameters=None,\n",
|
1172 |
+
" verbosity=None)],\n",
|
1173 |
+
" 'model__learning_rate': [0.2, 0.3, 0.4, 0.5, 0.6, 0.7,\n",
|
1174 |
+
" 0.8, 0.9, 1, 1.1, 1.2],\n",
|
1175 |
+
" 'scaler': [StandardScaler(), MinMaxScaler(), None]}])"
|
1176 |
+
]
|
1177 |
+
},
|
1178 |
+
"execution_count": 31,
|
1179 |
+
"metadata": {},
|
1180 |
+
"output_type": "execute_result"
|
1181 |
+
}
|
1182 |
+
],
|
1183 |
+
"source": [
|
1184 |
+
"grid.fit(X_train, y_train) #muestra los pasos x defecto"
|
1185 |
+
]
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"cell_type": "code",
|
1189 |
+
"execution_count": 32,
|
1190 |
+
"metadata": {},
|
1191 |
+
"outputs": [
|
1192 |
+
{
|
1193 |
+
"data": {
|
1194 |
+
"text/html": [
|
1195 |
+
"<style>div.sk-top-container {color: black;background-color: white;}div.sk-toggleable {background-color: white;}label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.2em 0.3em;box-sizing: border-box;text-align: center;}div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}div.sk-estimator {font-family: monospace;background-color: #f0f8ff;margin: 0.25em 0.25em;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;}div.sk-estimator:hover {background-color: #d4ebff;}div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;}div.sk-item {z-index: 1;}div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}div.sk-parallel-item:only-child::after {width: 0;}div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0.2em;box-sizing: border-box;padding-bottom: 0.1em;background-color: white;position: relative;}div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}div.sk-label-container {position: relative;z-index: 2;text-align: center;}div.sk-container {display: inline-block;position: relative;}</style><div class=\"sk-top-container\"><div class=\"sk-container\"><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"e6e964df-0baa-49a5-8a1e-77b6f069b78c\" type=\"checkbox\" ><label class=\"sk-toggleable__label\" for=\"e6e964df-0baa-49a5-8a1e-77b6f069b78c\">Pipeline</label><div class=\"sk-toggleable__content\"><pre>Pipeline(steps=[('FeatureSelection',\n",
|
1196 |
+
" FeatureSelection(selected_features=['acc_max', 'acc_kurtosis',\n",
|
1197 |
+
" 'gyro_kurtosis', 'lin_max',\n",
|
1198 |
+
" 'acc_skewness',\n",
|
1199 |
+
" 'gyro_skewness',\n",
|
1200 |
+
" 'post_gyro_max',\n",
|
1201 |
+
" 'post_lin_max'])),\n",
|
1202 |
+
" ('scaler', StandardScaler()),\n",
|
1203 |
+
" ('model',\n",
|
1204 |
+
" XGBClassifier(base_score=0.5, booster='gbtree',\n",
|
1205 |
+
" colsample_bylevel=1, colsample_bynode=1,\n",
|
1206 |
+
" colsample_bytree=1, eval_metric='logloss',\n",
|
1207 |
+
" gamma=0, gpu_id=-1, importance_type='gain',\n",
|
1208 |
+
" interaction_constraints='', learning_rate=0.5,\n",
|
1209 |
+
" max_delta_step=0, max_depth=6,\n",
|
1210 |
+
" min_child_weight=1, missing=nan,\n",
|
1211 |
+
" monotone_constraints='()', n_estimators=100,\n",
|
1212 |
+
" n_jobs=12, num_parallel_tree=1, random_state=0,\n",
|
1213 |
+
" reg_alpha=0, reg_lambda=1, scale_pos_weight=1,\n",
|
1214 |
+
" subsample=1, tree_method='exact',\n",
|
1215 |
+
" validate_parameters=1, verbosity=None))])</pre></div></div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"6d5f5ea5-673e-4db1-b258-041feb8a3482\" type=\"checkbox\" ><label class=\"sk-toggleable__label\" for=\"6d5f5ea5-673e-4db1-b258-041feb8a3482\">FeatureSelection</label><div class=\"sk-toggleable__content\"><pre>FeatureSelection(selected_features=['acc_max', 'acc_kurtosis', 'gyro_kurtosis',\n",
|
1216 |
+
" 'lin_max', 'acc_skewness', 'gyro_skewness',\n",
|
1217 |
+
" 'post_gyro_max', 'post_lin_max'])</pre></div></div></div><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"4cd06878-e1f5-4ebf-a2e7-f966b2c7ce03\" type=\"checkbox\" ><label class=\"sk-toggleable__label\" for=\"4cd06878-e1f5-4ebf-a2e7-f966b2c7ce03\">StandardScaler</label><div class=\"sk-toggleable__content\"><pre>StandardScaler()</pre></div></div></div><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"289c49df-e6a2-4e71-97d2-f53cf749144e\" type=\"checkbox\" ><label class=\"sk-toggleable__label\" for=\"289c49df-e6a2-4e71-97d2-f53cf749144e\">XGBClassifier</label><div class=\"sk-toggleable__content\"><pre>XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,\n",
|
1218 |
+
" colsample_bynode=1, colsample_bytree=1, eval_metric='logloss',\n",
|
1219 |
+
" gamma=0, gpu_id=-1, importance_type='gain',\n",
|
1220 |
+
" interaction_constraints='', learning_rate=0.5, max_delta_step=0,\n",
|
1221 |
+
" max_depth=6, min_child_weight=1, missing=nan,\n",
|
1222 |
+
" monotone_constraints='()', n_estimators=100, n_jobs=12,\n",
|
1223 |
+
" num_parallel_tree=1, random_state=0, reg_alpha=0, reg_lambda=1,\n",
|
1224 |
+
" scale_pos_weight=1, subsample=1, tree_method='exact',\n",
|
1225 |
+
" validate_parameters=1, verbosity=None)</pre></div></div></div></div></div></div></div>"
|
1226 |
+
],
|
1227 |
+
"text/plain": [
|
1228 |
+
"Pipeline(steps=[('FeatureSelection',\n",
|
1229 |
+
" FeatureSelection(selected_features=['acc_max', 'acc_kurtosis',\n",
|
1230 |
+
" 'gyro_kurtosis', 'lin_max',\n",
|
1231 |
+
" 'acc_skewness',\n",
|
1232 |
+
" 'gyro_skewness',\n",
|
1233 |
+
" 'post_gyro_max',\n",
|
1234 |
+
" 'post_lin_max'])),\n",
|
1235 |
+
" ('scaler', StandardScaler()),\n",
|
1236 |
+
" ('model',\n",
|
1237 |
+
" XGBClassifier(base_score=0.5, booster='gbtree',\n",
|
1238 |
+
" colsample_bylevel=1, colsample_bynode=1,\n",
|
1239 |
+
" colsample_bytree=1, eval_metric='logloss',\n",
|
1240 |
+
" gamma=0, gpu_id=-1, importance_type='gain',\n",
|
1241 |
+
" interaction_constraints='', learning_rate=0.5,\n",
|
1242 |
+
" max_delta_step=0, max_depth=6,\n",
|
1243 |
+
" min_child_weight=1, missing=nan,\n",
|
1244 |
+
" monotone_constraints='()', n_estimators=100,\n",
|
1245 |
+
" n_jobs=12, num_parallel_tree=1, random_state=0,\n",
|
1246 |
+
" reg_alpha=0, reg_lambda=1, scale_pos_weight=1,\n",
|
1247 |
+
" subsample=1, tree_method='exact',\n",
|
1248 |
+
" validate_parameters=1, verbosity=None))])"
|
1249 |
+
]
|
1250 |
+
},
|
1251 |
+
"execution_count": 32,
|
1252 |
+
"metadata": {},
|
1253 |
+
"output_type": "execute_result"
|
1254 |
+
}
|
1255 |
+
],
|
1256 |
+
"source": [
|
1257 |
+
"grid.best_estimator_ #el mejor modelo "
|
1258 |
+
]
|
1259 |
+
},
|
1260 |
+
{
|
1261 |
+
"cell_type": "code",
|
1262 |
+
"execution_count": 33,
|
1263 |
+
"metadata": {},
|
1264 |
+
"outputs": [
|
1265 |
+
{
|
1266 |
+
"name": "stdout",
|
1267 |
+
"output_type": "stream",
|
1268 |
+
"text": [
|
1269 |
+
"El modelo arroj贸 un accuracy score en el conjunto de entrenamiento de: 0.9824880382775121\n"
|
1270 |
+
]
|
1271 |
+
}
|
1272 |
+
],
|
1273 |
+
"source": [
|
1274 |
+
"print(\"El modelo arroj贸 un accuracy score en el conjunto de entrenamiento de: \", grid.best_score_) #vemos el accuracy del mejor modelo"
|
1275 |
+
]
|
1276 |
+
},
|
1277 |
+
{
|
1278 |
+
"cell_type": "code",
|
1279 |
+
"execution_count": 34,
|
1280 |
+
"metadata": {},
|
1281 |
+
"outputs": [
|
1282 |
+
{
|
1283 |
+
"data": {
|
1284 |
+
"text/plain": [
|
1285 |
+
"{'model': XGBClassifier(base_score=None, booster=None, colsample_bylevel=None,\n",
|
1286 |
+
" colsample_bynode=None, colsample_bytree=None,\n",
|
1287 |
+
" eval_metric='logloss', gamma=None, gpu_id=None,\n",
|
1288 |
+
" importance_type='gain', interaction_constraints=None,\n",
|
1289 |
+
" learning_rate=0.5, max_delta_step=None, max_depth=None,\n",
|
1290 |
+
" min_child_weight=None, missing=nan, monotone_constraints=None,\n",
|
1291 |
+
" n_estimators=100, n_jobs=None, num_parallel_tree=None,\n",
|
1292 |
+
" random_state=None, reg_alpha=None, reg_lambda=None,\n",
|
1293 |
+
" scale_pos_weight=None, subsample=None, tree_method=None,\n",
|
1294 |
+
" validate_parameters=None, verbosity=None),\n",
|
1295 |
+
" 'model__learning_rate': 0.5,\n",
|
1296 |
+
" 'scaler': StandardScaler()}"
|
1297 |
+
]
|
1298 |
+
},
|
1299 |
+
"execution_count": 34,
|
1300 |
+
"metadata": {},
|
1301 |
+
"output_type": "execute_result"
|
1302 |
+
}
|
1303 |
+
],
|
1304 |
+
"source": [
|
1305 |
+
"grid.best_params_ #vemos los mejores hiperpar谩metros del mejor modelo"
|
1306 |
+
]
|
1307 |
+
},
|
1308 |
+
{
|
1309 |
+
"cell_type": "code",
|
1310 |
+
"execution_count": 35,
|
1311 |
+
"metadata": {},
|
1312 |
+
"outputs": [
|
1313 |
+
{
|
1314 |
+
"name": "stdout",
|
1315 |
+
"output_type": "stream",
|
1316 |
+
"text": [
|
1317 |
+
"El modelo tiene un accuracy score de: 0.9803921568627451\n"
|
1318 |
+
]
|
1319 |
+
}
|
1320 |
+
],
|
1321 |
+
"source": [
|
1322 |
+
"print(\"El modelo tiene un accuracy score de: \", accuracy_score(grid.best_estimator_.predict(X_test),y_test))"
|
1323 |
+
]
|
1324 |
+
},
|
1325 |
+
{
|
1326 |
+
"cell_type": "code",
|
1327 |
+
"execution_count": 36,
|
1328 |
+
"metadata": {},
|
1329 |
+
"outputs": [],
|
1330 |
+
"source": [
|
1331 |
+
"y_pred = grid.best_estimator_.predict(X_test)"
|
1332 |
+
]
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"cell_type": "code",
|
1336 |
+
"execution_count": 37,
|
1337 |
+
"metadata": {},
|
1338 |
+
"outputs": [
|
1339 |
+
{
|
1340 |
+
"name": "stdout",
|
1341 |
+
"output_type": "stream",
|
1342 |
+
"text": [
|
1343 |
+
" precision recall f1-score support\n",
|
1344 |
+
"\n",
|
1345 |
+
" 0 0.98 0.99 0.98 204\n",
|
1346 |
+
" 1 0.99 0.97 0.98 153\n",
|
1347 |
+
"\n",
|
1348 |
+
" accuracy 0.98 357\n",
|
1349 |
+
" macro avg 0.98 0.98 0.98 357\n",
|
1350 |
+
"weighted avg 0.98 0.98 0.98 357\n",
|
1351 |
+
"\n"
|
1352 |
+
]
|
1353 |
+
}
|
1354 |
+
],
|
1355 |
+
"source": [
|
1356 |
+
"from sklearn.metrics import classification_report\n",
|
1357 |
+
"from sklearn.metrics import confusion_matrix\n",
|
1358 |
+
"import seaborn as sns\n",
|
1359 |
+
"import itertools\n",
|
1360 |
+
"y_pred_ = list(itertools.chain(y_pred))\n",
|
1361 |
+
"y_test_ = list(itertools.chain(y_test))\n",
|
1362 |
+
"\n",
|
1363 |
+
"print(classification_report(y_test_, y_pred_))\n"
|
1364 |
+
]
|
1365 |
+
},
|
1366 |
+
{
|
1367 |
+
"cell_type": "code",
|
1368 |
+
"execution_count": 38,
|
1369 |
+
"metadata": {},
|
1370 |
+
"outputs": [],
|
1371 |
+
"source": [
|
1372 |
+
"import pickle"
|
1373 |
+
]
|
1374 |
+
},
|
1375 |
+
{
|
1376 |
+
"cell_type": "code",
|
1377 |
+
"execution_count": 39,
|
1378 |
+
"metadata": {},
|
1379 |
+
"outputs": [],
|
1380 |
+
"source": [
|
1381 |
+
"best_model = grid.best_estimator_\n",
|
1382 |
+
"\n",
|
1383 |
+
"\n",
|
1384 |
+
"with open('mejor_modelo_tp4.pkl', 'wb') as f:\n",
|
1385 |
+
" pickle.dump(best_model, f)"
|
1386 |
+
]
|
1387 |
+
}
|
1388 |
+
],
|
1389 |
+
"metadata": {
|
1390 |
+
"kernelspec": {
|
1391 |
+
"display_name": "dhdsblend2021",
|
1392 |
+
"language": "python",
|
1393 |
+
"name": "python3"
|
1394 |
+
},
|
1395 |
+
"language_info": {
|
1396 |
+
"codemirror_mode": {
|
1397 |
+
"name": "ipython",
|
1398 |
+
"version": 3
|
1399 |
+
},
|
1400 |
+
"file_extension": ".py",
|
1401 |
+
"mimetype": "text/x-python",
|
1402 |
+
"name": "python",
|
1403 |
+
"nbconvert_exporter": "python",
|
1404 |
+
"pygments_lexer": "ipython3",
|
1405 |
+
"version": "3.8.13"
|
1406 |
+
},
|
1407 |
+
"orig_nbformat": 4,
|
1408 |
+
"vscode": {
|
1409 |
+
"interpreter": {
|
1410 |
+
"hash": "052e7fd3051fb62256c874c1940dfbcd26c7f9302251177c1c2130ce8acd18fb"
|
1411 |
+
}
|
1412 |
+
}
|
1413 |
+
},
|
1414 |
+
"nbformat": 4,
|
1415 |
+
"nbformat_minor": 2
|
1416 |
+
}
|
Test.csv
ADDED
@@ -0,0 +1,357 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,acc_max,gyro_max,acc_kurtosis,gyro_kurtosis,label,lin_max,acc_skewness,gyro_skewness,post_gyro_max,post_lin_max,fall
|
2 |
+
9,28.05519859535977,10.794617323010852,21.334536447601472,34.16381128227045,FOL,13.880577944682654,3.2834044377683167,4.577282542553694,10.755338641709578,13.762561204533556,1
|
3 |
+
11,26.639680553929008,8.785023804201199,13.518670772298544,12.812893552287926,FOL,15.789371872403208,3.301849452968188,3.464729238136188,8.27771420011614,15.341656211635405,1
|
4 |
+
19,25.045218505920648,5.307413288701565,21.60306032276784,4.754181686390407,FOL,11.592445108437284,3.1247144793250032,2.2686758039686903,4.976133776145394,11.30382329642677,1
|
5 |
+
23,24.102184433074232,8.929060834446322,24.647657408919805,18.59568359865668,FOL,10.10783466045926,4.522304629479844,3.9552876144970255,8.719755006734701,9.727436785243611,1
|
6 |
+
28,31.66880767987157,10.714749860423392,18.0089122276298,15.086250590586191,FOL,14.138264901179811,3.142131887399936,3.5306213086722966,10.580791277457864,13.93501608864424,1
|
7 |
+
32,28.828936347588183,4.896527208467134,21.545432194132665,6.8808081735657725,FOL,7.42123731249723,3.666787537322724,2.5463484464936723,4.8376325431019565,7.342723371298781,1
|
8 |
+
36,30.572397258883857,7.35190674375357,18.434679415668786,22.823228668907625,FOL,11.772575980539688,3.8466008269555103,3.91567682122992,7.114523302942788,11.188605682536169,1
|
9 |
+
41,24.120890588912825,4.82297262209205,25.28494104943809,5.373700918777202,FOL,9.68498816989189,3.94663214869771,2.40115959447104,4.758358638905193,9.581053127060589,1
|
10 |
+
42,26.09969906685643,10.7519124233488,12.484428454348857,16.478316373746846,FOL,10.134481512014686,2.444529286618209,3.489323502920626,10.695903209006188,9.969141418679769,1
|
11 |
+
43,28.25568601927073,5.5649846715010085,14.78561539490733,4.064957793988343,FOL,8.468906272060678,3.203897963486894,2.145354235724656,4.700211009368287,7.363725283954484,1
|
12 |
+
47,27.16508320914863,7.994755618388835,16.395911474276335,8.117632190903231,FOL,12.63057210027421,3.4340486197109343,2.768507302368722,7.940154035797493,12.538196828860068,1
|
13 |
+
53,26.520924461992315,4.615356438779256,12.813780709669786,6.148091496822191,FOL,11.901719337442712,2.4349214273955813,2.492567082359076,4.510459118641143,11.720810783861277,1
|
14 |
+
57,26.669630771920826,6.432186507829393,19.00300970826891,10.423145021373443,FOL,8.77849702687983,3.7490579055184208,3.1861761370076334,6.09362412299623,8.111725717307966,1
|
15 |
+
58,30.539622152317552,7.007042588384992,21.385483968891748,9.820452926189162,FOL,15.40041070729741,4.231585520394664,3.10587624169102,6.952354793382767,15.303016591184177,1
|
16 |
+
70,26.87072175030601,12.88523832301778,11.4655886900107,9.008338142902726,FOL,12.933568586385608,2.62442788896165,2.9128471378196967,12.652602706249606,12.563903550117214,1
|
17 |
+
72,28.558023875692506,4.182922027922354,19.637086348188262,4.952926927612339,FOL,15.99893496624578,3.5214803988561982,2.178141781004954,3.9288399032277113,15.676040686881937,1
|
18 |
+
80,24.402452552822385,7.328835002159143,19.319826683355068,19.79163198263485,FOL,8.361839005891609,3.745745442309167,3.706123966640385,7.1194719143120935,8.150851024555074,1
|
19 |
+
82,25.183593909424424,11.50561153560719,12.60519583569215,9.353825681292246,FOL,12.26174307893678,2.266115054691958,2.5906282109473286,11.315924841619529,12.095609133007247,1
|
20 |
+
84,21.28777202057265,2.7621960561865486,6.1931385222203925,6.2147658963635255,FOL,4.845818787660597,1.8231253670985967,2.443142005419769,2.6177596910786023,4.686363085273009,1
|
21 |
+
86,26.07429064134942,7.873612881000737,14.12676482883782,18.26856284311963,FOL,10.202157942570471,3.0354893202284376,3.6479944259797534,7.737313935835773,9.98987276874256,1
|
22 |
+
87,27.28176112258678,5.993059027680732,19.350745347858965,12.162468810582034,FOL,8.8317834535251,3.834749587311981,3.374600400063595,5.5127318723855865,8.308027108324154,1
|
23 |
+
91,27.773718536177743,7.344361032553007,16.72556447183532,7.946070644519273,FOL,10.799986200205336,3.1081794419414988,2.7025397534943547,7.186709272053133,10.712336161233733,1
|
24 |
+
94,26.2928632657581,7.097739875392607,10.102472446452763,6.635507294297553,FOL,13.664718538878049,2.563125210924877,2.4477330854184984,7.032679144015,13.52587986351804,1
|
25 |
+
95,29.179881377364925,7.253743233578452,16.65356244862539,11.16218389663026,FOL,11.621114436077928,3.2526488398758966,2.960198246110341,7.158382692864831,11.223343897909473,1
|
26 |
+
98,24.78125821411768,4.295595258195161,12.262248287229768,3.8810297229487727,FOL,6.863231714440558,2.7731906241865825,2.0644066841254936,4.216095310349346,6.657133148232959,1
|
27 |
+
99,27.718405108831487,6.929778751278326,23.76859857645461,25.01369534165165,FOL,11.995734473914723,4.035682688513682,3.8738439362970616,6.898222963120931,11.902743577663284,1
|
28 |
+
115,25.097390384993915,6.36653553402978,12.23714396026116,7.42954018336489,FOL,10.449165892158128,2.835462691285332,2.576270895001181,6.3051481348663065,10.361865791343751,1
|
29 |
+
119,26.951460925401587,3.506051631254261,24.389575559362825,11.667399003239296,FOL,8.780570830195911,4.5314799843400735,3.1270088081777616,3.380726333289433,8.617385521458004,1
|
30 |
+
123,28.10139406467308,5.4647180547499135,16.023477163894878,8.840474109220011,FOL,8.785144610597309,2.6001575249652373,3.0243319198316896,5.407909226114299,8.716302180933987,1
|
31 |
+
128,24.45910144651682,9.886872770947846,14.354962096857054,12.465577383524792,FOL,12.413324878552848,2.725673235026329,3.426782727675385,9.814374493930533,12.299727733530249,1
|
32 |
+
130,21.5283285804036,7.620146495634582,10.51395705514799,13.65711899757973,FOL,8.616814205119862,1.8141666602422628,3.3414916363919493,7.3958688824367345,8.305120828843132,1
|
33 |
+
131,20.98253171297174,3.315098193335166,12.717697078433703,6.047675982372817,FOL,9.105786935010816,2.8697680382368453,2.537602918000128,3.1447480988416663,8.944207994613999,1
|
34 |
+
139,26.293666982811256,7.8103303579595025,16.51422390601338,14.70354357816231,FOL,8.8234991326367,3.114713557482654,3.4146876329556703,7.662570402223222,8.57681810682402,1
|
35 |
+
143,23.379953190394147,4.397775438464862,18.68693753790361,9.890516328676055,FOL,9.292498724561003,3.3652018383718465,3.052333911760606,4.319782395675853,9.147125824860932,1
|
36 |
+
147,23.74714755460193,5.611364680026449,12.0588502059196,7.960757382263801,FOL,10.614204955280115,2.7921937064361613,2.7942563530409865,5.5167490696252575,10.459427460959263,1
|
37 |
+
148,26.868107547938106,10.919161635648727,22.75028981660467,18.23276080003489,FOL,17.079778638621313,3.666903904707661,3.8009499466380094,10.839776763638262,16.98992268205997,1
|
38 |
+
151,25.88438431033107,5.099723264137478,18.547604755532067,9.187641999636426,FOL,10.549303559070436,3.2720803368066207,2.6776068719423245,5.024128229562046,10.398952961928403,1
|
39 |
+
169,21.436249408197654,6.868319743086975,8.228273104213857,19.489902792250252,FOL,6.907208624317317,1.5183185676253268,3.584338098573796,5.465602605170774,4.875543789468925,1
|
40 |
+
174,27.149049603100718,5.347245072368471,12.059010923119,8.326423919880778,FOL,13.854185658295853,2.3880133334390456,2.8428728538560986,5.1817003161810815,13.58634832876147,1
|
41 |
+
177,29.064369582281284,4.224935418411326,16.51923521454265,5.14844668884592,FOL,9.475473409066804,3.3975017872092854,2.2563500787066726,4.1302163380981325,9.398895459292348,1
|
42 |
+
180,25.04851115545279,6.1662142905462005,20.235291497124127,6.631587649415975,FOL,8.264503907355971,3.4536822707604933,2.629148429578781,6.0837752046418725,8.099250465573968,1
|
43 |
+
182,24.596751759574826,3.9222381030202618,13.658267996120028,3.4606131363667783,FOL,10.637275516476125,2.930697059705037,2.0393640002800124,3.7459696001621454,10.430968804363497,1
|
44 |
+
183,23.71744332575648,6.5512926642975815,28.45888821198687,6.949311079509085,FOL,8.903471805356551,2.798423174784081,2.6627502411560227,6.488597830157692,8.835937747986119,1
|
45 |
+
184,29.38241569852587,6.900017197684687,17.592749498678568,13.546733844047363,FOL,10.95189879094528,2.9066740296722933,3.284626057826329,6.755986360231692,10.70671401568778,1
|
46 |
+
192,27.71469621646352,3.987991457864106,32.79163239269589,1.906440403737253,BSC,12.038115780845857,4.055921310675713,1.7419385584549671,3.831489499980379,11.875748229700305,1
|
47 |
+
197,25.201343373796487,6.393933055159493,21.912727218640924,3.5568209379117675,BSC,9.025418557452944,2.5418267395789327,2.050966670420609,6.340748297560357,8.924216226574973,1
|
48 |
+
201,25.7067029403966,3.6281221612414543,42.225657160985385,2.5368965485869306,BSC,9.505200285398477,5.267692731617087,1.9179613143322567,3.3684444316783058,9.179793411587625,1
|
49 |
+
203,23.1323099106352,3.9069120577949614,17.555833178383665,0.0845176519916437,BSC,11.659616675815004,3.163800696374011,1.2377088990742604,3.8268997858078624,11.55901731828524,1
|
50 |
+
209,29.06032234387441,4.187320719551908,24.93995444528032,1.360892279521837,BSC,11.412048727748711,3.5132722980896403,1.5002852372429738,3.976858139152912,11.11592644905091,1
|
51 |
+
226,26.66581999865132,6.2531554333279455,30.27764470024708,10.011920768304352,BSC,10.133985300589169,4.282202016169459,2.5561426438093457,6.213682474696037,10.055896736770968,1
|
52 |
+
227,22.26273921571629,5.407959101205715,13.470216612612225,1.9421187483414368,BSC,8.451811981734798,2.692420254082164,1.5428111223339125,2.330305532942383,4.391007855566566,1
|
53 |
+
244,24.66487155990543,7.350243997944577,9.453472601342847,0.4598310189816761,BSC,12.89743246997642,1.752109858084934,1.005424623098506,2.6078905025236665,7.970385643094696,1
|
54 |
+
248,27.4384822057098,5.826831595315797,35.30687301543385,3.0506046148900063,BSC,13.125259303028484,5.334802091484215,1.567705211651358,5.70233079910752,12.846749757901678,1
|
55 |
+
256,27.22025682522872,10.587061132072536,6.077275482445486,6.759918364561839,BSC,16.411921779577572,1.1815884979377531,2.095618548988784,7.511512826216206,10.701672493775703,1
|
56 |
+
257,25.97809677708784,4.403478644907428,24.412785101035062,1.3428782341170638,BSC,9.617007731677424,3.9756317425460255,1.6059298855730078,4.330288165930681,9.53165326395114,1
|
57 |
+
260,25.869034510076197,6.192260688146447,14.30525121599774,1.8853546260890048,BSC,10.969617510618608,3.0335694403129505,1.6464539569012508,6.090577307441769,10.89099822420026,1
|
58 |
+
265,23.02919116527844,3.16751317774299,25.81501156060337,0.1986956717587067,BSC,7.163283803873007,3.7341906000501632,1.1807011068625552,3.1130587301881083,7.030520486994238,1
|
59 |
+
269,29.486067434293517,3.835198778125968,50.65283752482068,1.9054591551898687,BSC,12.798903038699866,5.629113277955072,1.746870946501446,3.663439423577845,12.552106347342342,1
|
60 |
+
273,32.15525868505313,3.059153711494045,52.39439428242752,1.615792424056015,BSC,10.856921216671,6.492179218785172,1.6362706798771582,2.8898288581902776,10.612954446101348,1
|
61 |
+
275,25.254016754854213,7.6591977948145775,24.22350670047223,3.007580480280652,BSC,10.320029053928405,3.038272615308708,1.7818579925399871,7.525381702784839,10.210186819435664,1
|
62 |
+
277,29.544144221724626,3.0077777658871288,14.26683817966892,0.4169921050276391,BSC,12.312339936529026,2.7062532298170345,1.1228721606448764,2.8546240881280105,11.84822699293501,1
|
63 |
+
280,31.243678442103448,10.816820167993535,28.70024980674512,8.0034335137738,BSC,12.957044757651625,4.26655296220006,2.075720005310739,10.026332293468029,11.349150264247148,1
|
64 |
+
286,29.394481343344488,3.7610709236643576,38.560591500909744,1.9956502150531883,BSC,10.907699507100174,5.085023169797561,1.69429858827451,3.6078091598269033,10.556081345510163,1
|
65 |
+
288,28.850970890039147,5.6686589857427325,31.794943287947987,1.1900948558222786,BSC,12.331090629651776,3.5881599166325904,1.425923643018968,5.605878650334263,12.15099774502534,1
|
66 |
+
291,26.147171989820123,4.851163152271092,46.73549394132371,1.631465579799165,BSC,11.31123139290396,5.391115889599974,1.5038020290049243,4.714239027235179,11.19281498932564,1
|
67 |
+
292,23.51043297297784,6.88050817126909,12.531616953083873,2.8042709166243465,BSC,7.9263666566839905,1.6999639953356525,1.9739905779432927,6.789176152426416,7.829430196153562,1
|
68 |
+
296,28.760642786053943,2.9877953563595687,41.36701169253028,-0.2037880208752711,BSC,12.861600647375472,4.838109546225566,1.0187507083610692,2.414630226563552,12.427067555486213,1
|
69 |
+
305,26.07801284761149,3.958578698724517,32.032724903425304,3.1327762225965787,BSC,8.26634152355089,4.37062951924808,1.9938600836630485,3.8749715759420646,8.123144889555222,1
|
70 |
+
307,26.47759828584198,4.228950215117594,18.63626706881611,0.6849883033487938,BSC,9.633104569440606,2.612746255448267,1.4126291062564766,3.970080977616505,9.213873477466578,1
|
71 |
+
314,29.21331408875103,6.087376692756196,18.488045795327743,3.168404642811451,BSC,10.389887583255174,3.3442785705583984,1.7051750503051406,5.065349240497968,9.266629255337785,1
|
72 |
+
321,26.77885263211645,6.180822362392608,19.00283216492437,0.9464865602164214,BSC,8.280677719656905,3.226877356468397,1.1260630391354478,6.148410505943371,8.205306111466388,1
|
73 |
+
323,26.81941406624309,5.610032650718439,27.90005535944888,2.7024916669841343,BSC,10.766954198342647,3.57007540858942,1.892896915613348,5.416604082236336,10.56158702628318,1
|
74 |
+
324,28.5775074833427,8.206773902007706,17.691389321761722,4.138341202161978,BSC,10.836736614275024,2.5738104449381134,1.5604985220713516,7.046864524609433,8.795480108220797,1
|
75 |
+
328,30.329036927965564,4.655524022952138,17.622807474666434,0.5100321363512745,BSC,9.920533207956504,3.0305324377401623,1.2844986434327716,4.245754433414706,8.894576983243093,1
|
76 |
+
335,30.90273908763297,7.475203915435394,28.700143579199253,7.518795825669061,BSC,15.605900252938426,4.549414647754544,2.3483214671472794,7.095423402487298,15.307000698199522,1
|
77 |
+
359,27.309080284629346,5.046807015166476,31.300724725765253,0.0233622015114818,BSC,7.612060190770026,4.72414818603493,0.9947927321468424,1.3870336417216818,-3.7958103356639454,1
|
78 |
+
368,28.085145464750703,7.143534253137712,19.934335804180364,4.533260473223431,BSC,9.9453859127536,3.2343710730557813,2.0090912612545018,6.874737236656648,9.547871018150502,1
|
79 |
+
370,30.17425332434616,5.9746364371016485,29.48947145348321,2.7214294894686617,BSC,10.929721630479014,4.459418435287209,1.8990907495901503,5.784437478582711,10.699992090698425,1
|
80 |
+
371,25.075971245799536,5.193053409244115,19.92521809293688,2.821979799070814,BSC,7.802071576070991,3.014559352962785,1.6625243034734545,4.318491198353855,5.2759207902235286,1
|
81 |
+
373,30.789296585030822,4.793448079259479,23.79956448984768,1.4631352861691425,BSC,11.38866138747884,3.565648807963658,1.61555252421356,4.660602799802947,11.12448051806008,1
|
82 |
+
377,21.50638925750939,5.898308981076635,10.614797536444744,1.6054609841919554,BSC,5.834418079028847,2.6113845635615363,1.447049630104528,5.8170082325192825,5.57661613024625,1
|
83 |
+
383,25.082223494491966,3.8353755690993774,16.853616517501866,4.272713143958132,FKL,12.011355920031832,2.836797312557885,2.098549266562128,3.687803242281397,11.61684728291334,1
|
84 |
+
387,23.738724102776352,6.052864575663848,10.144541445098309,6.0621517441959325,FKL,11.031496059348502,2.111566097398492,2.485204918254255,5.882527885809827,10.737893606148493,1
|
85 |
+
388,23.862084905523748,6.832389887125532,11.28020376023052,10.731603277613347,FKL,15.791340627301071,2.5896553637557607,3.2570698171777868,6.575223236781025,15.250342897593232,1
|
86 |
+
396,26.448222447699017,11.772249627077104,8.802544080606896,14.050993440781047,FKL,18.191812929695462,2.3995603845369065,3.5503814369642592,11.542351570516214,17.69779143537354,1
|
87 |
+
398,25.18157974529148,14.136503356417457,8.603816398634782,8.463024054513776,FKL,12.254293620738098,1.1957868016998658,2.833963725980901,14.06214509560796,12.1071595623693,1
|
88 |
+
410,31.34562045351905,7.433307158530447,20.83120666671157,14.75416025270614,FKL,9.844218042397785,3.5559299465910046,3.5759724095960803,7.359275811092324,9.708321240011026,1
|
89 |
+
411,20.28300856090104,14.333960858990002,9.981144010097204,30.974239072441826,FKL,11.2616823448568,0.7224597794817065,4.464718505824778,14.276217934818824,11.159992933148544,1
|
90 |
+
423,20.96716013365591,5.482830926923142,4.805188321385339,3.448347781626595,FKL,6.347070656464045,1.3221613320918773,2.0713066562040026,4.986283351746684,4.981686249490286,1
|
91 |
+
430,26.73891692926968,11.326628963095889,15.014334810745726,16.98025991839939,FKL,14.238815716116802,2.71276869717795,3.3666522440294493,11.036581488605425,13.939257056259937,1
|
92 |
+
431,24.669887926583872,6.944638491551265,13.675335492399132,4.933871582976733,FKL,11.278701824047785,2.422174224144836,2.140969640346438,6.537739427900269,10.761379067580917,1
|
93 |
+
442,24.08650419804457,3.0389042613020982,11.092994978439906,3.905514734015495,FKL,6.527729513402942,2.3743346539333032,2.1715818281177026,2.9779484469658084,6.452066221793505,1
|
94 |
+
444,30.604402186447807,4.569097312458654,22.979349463549344,5.909420837968317,FKL,10.341958826449954,3.659000485832349,2.534086335003288,4.543818264729737,10.283319051198369,1
|
95 |
+
448,19.5991021041402,5.7889169590378655,7.212117676606983,3.836989957085877,FKL,7.412205397720473,2.031797413140416,2.116519018926736,5.374903071867761,6.246680757012597,1
|
96 |
+
450,24.64250008948492,7.922367135810346,10.883623532870589,9.130829872360025,FKL,12.878996322638343,2.238811014313805,2.9319382784663683,7.757457843963702,12.764843661869769,1
|
97 |
+
459,25.44876271841969,6.215864335733981,11.612883980712828,7.457896966390742,FKL,12.746013064491985,2.3571461986866407,2.6279506048734014,5.9255405526458285,11.500575086348643,1
|
98 |
+
461,19.644645244531358,8.905319778136947,6.710169368437606,8.153789661559221,FKL,8.558080820672227,1.5757448642066016,2.6023395920243133,8.561836939946822,7.977429719944308,1
|
99 |
+
472,21.01923288847924,3.8580281649220938,10.916311572160904,2.8636859542557898,FKL,6.382872988558908,2.2506602047960715,1.8877303114122568,3.779989675586561,6.3089182059885855,1
|
100 |
+
486,23.97722599138817,4.107492664369845,15.36647762470951,7.644059395003895,FKL,10.732124652199683,2.780166304575965,2.8169543305876785,3.793454749856288,9.782404871138793,1
|
101 |
+
488,21.6208633432385,3.8398775416078377,12.031910999213617,5.447820898277374,FKL,7.488232754091593,2.0838337364695247,2.3927809335757377,3.1530690107461385,6.920483534022907,1
|
102 |
+
510,20.69253246658184,3.9702428285197935,9.340650528113244,6.576023290362022,FKL,5.41107177203416,1.5256406399295157,2.677454513238627,3.884488030989416,5.287305282861968,1
|
103 |
+
512,25.095886377006725,11.904716291498907,15.06325279675901,18.823302000747407,FKL,13.356254408450257,2.6148553142125768,3.718856622141187,11.791383910434492,13.06478004819035,1
|
104 |
+
515,25.294278969802576,14.429472896587631,7.650093598801126,12.707582846457193,FKL,11.522458742227409,1.79447214930234,3.2718342889341847,14.146716034765516,11.017401236705055,1
|
105 |
+
537,24.65432420301289,7.79786685812412,12.056760514620793,7.895319292740053,FKL,7.20760833055025,2.354292838827428,2.684329775998996,7.758036289693225,7.107494495258262,1
|
106 |
+
543,23.217454199355767,5.646382431494192,9.39866993602547,5.839198468867783,FKL,11.977287630220252,2.515509790844848,2.402762216229102,5.077144701129607,10.87038996564818,1
|
107 |
+
544,25.988433263084804,6.472963810606742,10.327208047572912,3.0011910231163528,FKL,12.605364288939366,2.5143907968769863,1.9471205843760668,5.528436850454008,10.236405473764457,1
|
108 |
+
550,21.550400076635828,5.169243466954371,9.001797754702672,6.900744472077864,FKL,11.953216948889755,2.383960668125754,2.7700635152936743,5.0703205398308375,11.770500233085285,1
|
109 |
+
551,24.47924497397356,3.9924699816507903,10.472260942618668,4.103078042646753,FKL,7.531414889724232,2.1124165305096083,2.204199453426158,3.940305343664608,7.4316642162255455,1
|
110 |
+
554,27.211059582863623,3.9858725987251344,20.744050844729365,13.764168879165783,FKL,8.05919670785515,3.8695036371623535,3.3215154081088154,3.917951766952807,7.944731219281802,1
|
111 |
+
555,20.876713985441693,5.62266977018424,12.60243692933229,4.573749643238171,FKL,10.366880205148316,2.398356226470704,2.290488075516768,5.354401677630864,10.089346604095336,1
|
112 |
+
559,25.541238993645912,10.725781864735112,11.629996042972795,17.791689731515532,FKL,12.504396168754274,2.2988207408447288,3.8891522122534914,10.4173554071419,11.955480052764356,1
|
113 |
+
560,22.268417923267013,8.22028083298822,9.152697503453448,7.933899337869122,FKL,17.090686885762597,2.2905509666268973,2.54304705598147,8.161707011741408,16.979335976392743,1
|
114 |
+
562,23.759434470436958,5.099037784530909,17.521013361762634,4.865698532945453,FKL,13.90278907594653,2.928679307046365,2.167319946775573,4.124699007873499,12.0632960759461,1
|
115 |
+
565,24.716029878085628,4.765146582440279,18.87346411877332,5.878586480909539,FKL,10.941182382427243,2.620708751883375,2.5639969517410126,4.526605843731018,10.604589138211525,1
|
116 |
+
574,27.40720575599295,6.058046697625607,13.111693565076411,3.2635630437357688,FKL,11.983768096885386,3.0778275081056075,1.860337687407546,6.015056582043044,11.905339044197593,1
|
117 |
+
581,26.984391652094523,6.6617111035272645,13.927118125809717,8.213126849911161,SDL,12.62665976532432,2.986110419261642,2.60420242980472,6.543788794038112,12.32839063194562,1
|
118 |
+
589,29.068738383546496,10.803425415203783,19.70082008653,22.602976914107423,SDL,19.25803124367309,3.684722835828192,4.0927495398791445,10.745413314171737,19.131314916061992,1
|
119 |
+
594,25.06544055193318,4.685733148245567,17.70529199009314,6.350549970152506,SDL,11.526994405634747,2.6533473855524368,2.2853290515046067,2.9766575916655302,10.37591774875648,1
|
120 |
+
598,25.81686991077441,8.198335428834486,14.725591138751554,6.685082508382733,SDL,13.449018029566552,3.2627445684733978,2.4983973547736995,7.286826150697447,11.377131382542409,1
|
121 |
+
599,26.87367580669004,4.725132424001373,15.716753225655156,4.684902287749297,SDL,7.9355945058213555,2.600932624712541,2.1544685526032104,4.484511024698482,7.721198239465218,1
|
122 |
+
600,24.57685318480229,6.2546028236037134,15.748281297183864,8.31987701873717,SDL,14.07147521203344,3.1388514244462806,2.5961097799060515,6.067551595736848,13.91684868067777,1
|
123 |
+
606,23.72622005284224,5.445669461988,12.08921223429347,5.58158986876406,SDL,8.840732067611512,2.9863787929514887,2.3289050641001445,5.126996235291731,8.18935216888269,1
|
124 |
+
607,25.52373741302446,5.959468717789974,7.613308069953574,1.6875625535973424,SDL,13.953136053847864,1.7530872750465871,1.6056592541577326,5.226026181638561,12.514432744007626,1
|
125 |
+
610,27.543020244590767,5.571904815080434,25.378813752798425,4.659586361866055,SDL,11.85353727864592,3.876744382234621,2.186393139154585,5.5317488470778,11.800978022436633,1
|
126 |
+
611,24.16904977198062,6.370143845252128,12.241822849818876,2.457816416811292,SDL,11.78388914005365,2.5122069280360493,1.5813218334886827,6.337883449204912,11.726085954115474,1
|
127 |
+
617,28.887234385978232,2.6923647786555818,54.433331369656784,-0.0674177063101426,SDL,9.510803936193629,6.1954647104292215,1.1067092923735249,2.3859024480923243,9.29090925557326,1
|
128 |
+
629,21.47746016954157,7.986448757390034,22.052879546906848,10.068257857564864,SDL,11.100515329130152,3.860095127038605,2.5717454591387,7.761264525050808,10.86455162092214,1
|
129 |
+
633,22.26957381854285,5.6957607473950365,8.669211554391838,10.303003389112476,SDL,6.841759368520219,2.6674207504299483,2.7045790368293368,4.8502615623282415,4.2363827565638905,1
|
130 |
+
639,25.763573994352413,6.262446126818513,11.703232933079386,4.0208458789113015,SDL,12.801272262017267,3.050439556048621,2.1103135960367534,6.070368829320801,12.705333280464403,1
|
131 |
+
659,27.60996390013325,14.209295128521084,11.215421520854356,11.285540145993751,SDL,16.961767036855957,2.6494235392994034,2.70638329252349,12.062872852625954,14.691865678645664,1
|
132 |
+
660,24.164277005276407,3.930439547271043,15.377065611769009,2.283868933386826,SDL,7.249427976561315,3.06384203742458,1.6959781434037964,3.6662994781740426,6.834136055576807,1
|
133 |
+
667,25.610887948472197,4.533052280444027,12.307291851456943,4.697581653314718,SDL,11.363068783271046,2.6047286886157326,2.0402023483113094,4.263885029846303,10.902071264662002,1
|
134 |
+
670,23.27259862573308,6.614014589772219,9.65439281533613,7.469628863516749,SDL,12.7058220520452,2.329391494407842,2.4999859569268765,6.559584989491216,12.59239188771358,1
|
135 |
+
675,26.42017827992828,5.81491858614368,31.81422952395396,5.840640302841329,SDL,9.712271778606294,4.670355758751889,2.3134907838742977,5.697834267692432,9.526448970949316,1
|
136 |
+
677,25.108549044066624,14.930247394959908,28.28847217830803,21.383662424791066,SDL,12.6833834356344,3.5081608506475765,3.98300354367656,14.370842728132164,11.948467825789288,1
|
137 |
+
684,21.73486121360009,11.498613336449196,10.872338826545038,11.867289425041092,SDL,12.034028630226464,2.190888758547556,3.2123233072264856,11.414059238918776,11.947620612506896,1
|
138 |
+
688,26.466328445997465,4.8681304098142455,23.25688662522127,3.4578331968630343,SDL,9.58333114938802,3.826300308049909,1.9646544366425136,3.39574444235412,8.570472229585326,1
|
139 |
+
697,23.724466046438646,4.784942996350818,15.26329745637048,3.0847085863614363,SDL,12.709468149241948,3.005466444454037,1.8998548324384428,4.652346884339331,12.588813760107609,1
|
140 |
+
705,24.785469688026524,4.777038202749819,9.484581026845644,0.3390088068427629,SDL,11.865695321574211,1.7940522401817889,1.1381931051451435,4.319865947854762,11.047314267301529,1
|
141 |
+
707,24.303826068395228,6.0443569157329575,10.9850078797355,2.3909405562669868,SDL,11.449167681194028,2.16210889878778,1.7262137556142612,5.418736453045198,10.858185415834274,1
|
142 |
+
709,26.95396552408285,6.120463246323517,18.896147990574203,6.987742721170019,SDL,10.157299792671903,3.5875271914682205,2.621038684144489,6.088130638992456,10.079933236043091,1
|
143 |
+
714,25.915121144738087,5.568031330308528,13.331674863792086,6.478468851149367,SDL,14.228566653787755,3.1108473257945466,2.25495809366978,5.441144382074666,13.894990841761382,1
|
144 |
+
717,26.22270898075817,11.171340344892291,16.469291986935204,16.143773678518507,SDL,13.026550340587578,2.821762027469217,3.564530455180233,10.816153452314913,12.793027988051549,1
|
145 |
+
718,22.63849800872529,3.9248009774856745,16.144417554110216,4.33416722881174,SDL,8.38193740000916,3.0042403667216493,2.012849323953322,3.6370396771717193,8.082334115299332,1
|
146 |
+
723,29.09200942179613,7.5478124785614416,21.698498323152627,11.665558030467546,SDL,15.565686354152492,3.6683779431064414,2.9382159676494912,7.4471099940923615,15.400388831849432,1
|
147 |
+
726,25.54879121238265,6.254546986790492,22.28230151381441,4.240461752103702,SDL,12.847055021488266,3.405510106958863,2.0538022491914827,6.100654709539622,12.58585676304314,1
|
148 |
+
727,26.99953475562565,4.245351739399465,26.90845713147068,5.027646087007419,SDL,9.815983103606998,3.9481033654740463,2.2830634782103343,4.078782277071548,9.475869446377772,1
|
149 |
+
729,16.886192846614676,4.7019308755581815,9.326076760103575,4.338194552994771,SDL,4.213116967726927,2.1599534362478443,2.0786230370790224,4.495921379955859,3.747341992550492,1
|
150 |
+
738,25.956779427343363,8.821479916218133,15.428593114711258,8.378641166076836,SDL,11.357865688363384,2.6760199361473904,2.6288716161463275,8.551915431488391,10.950621704720533,1
|
151 |
+
746,26.216322694690323,2.691652481326316,25.530238444499105,-0.0372974966634722,SDL,7.063767906394327,3.681450766457432,1.1278152464267035,2.6248681179947453,6.976774166157575,1
|
152 |
+
753,26.18153637804,5.773672171428161,16.34641885586687,6.03626320791486,SDL,14.914032317981627,3.3166687940240456,2.50081900006195,5.670895114355365,14.6532281555845,1
|
153 |
+
754,28.062540961335596,8.255724550953492,24.551545515893483,15.7219372978389,SDL,17.76142695061836,4.267498985703647,3.3863950448533093,8.16457146425094,17.545292469076355,1
|
154 |
+
759,26.969874929730345,6.747258562282263,18.19922618779805,3.1117736621505694,SDL,11.325553054409449,3.314024130760421,1.8956131589467504,6.391900062666979,10.91697814458381,1
|
155 |
+
767,21.162190790851067,4.627253258210394,5.6229925816749535,0.548966154763511,CSI,7.341543371580888,0.6723536305155953,1.0444159557963828,1.7800516460765974,4.519338627641121,0
|
156 |
+
774,16.136470421226832,2.1607011332557424,5.245151585293908,4.8944458798880826,CSI,3.870514686077344,0.1863488881775816,2.181251766315373,1.4313803847499096,2.791879789737606,0
|
157 |
+
780,18.243500981665388,6.478982198375928,4.700519325445777,2.0560763376662847,CSI,3.868882137191906,1.2898572214734494,1.5425768115193108,3.8054100836475664,1.0853002231675797,0
|
158 |
+
791,21.923660863887548,3.0738260917349463,7.355786865163482,5.265764390385692,CSI,5.701047611934833,1.4059698115203951,2.193197905658957,2.8103111993908225,5.3209835313715335,0
|
159 |
+
797,18.460765202398967,2.1735417511257102,14.743991468365314,2.158580588542812,CSI,4.3697222350566784,2.1110815965656844,1.2506773222675027,-0.2518753053809983,3.001226857587171,0
|
160 |
+
805,23.92079935761017,4.6934865118785325,6.828885767135468,0.1046660086278241,CSI,7.082850028621402,1.0549220801953705,1.1657339081301532,2.2446641858917102,4.8338148812895145,0
|
161 |
+
810,21.328817792731467,4.336891670116368,6.8750914603423885,5.5478463990591065,CSI,10.058935989772383,1.339616241712311,2.440975519069869,3.656022642575878,7.9386187144606115,0
|
162 |
+
826,21.01870207541024,2.929151160696508,25.21625367509387,2.730930706456632,CSI,7.293290505543947,4.12049551254888,1.8262491102923493,2.89489501667044,7.224241798245408,0
|
163 |
+
832,13.967107970806468,2.9407205380493364,4.66767806821771,0.225723033029896,CSI,2.286616060996784,1.2219335535497526,1.157278461274952,0.4189383271274196,-0.5859601622163373,0
|
164 |
+
835,18.2107264745742,2.6720592650523334,11.260592174503206,0.5262968233835683,CSI,6.784366868537332,2.034563809683976,0.9920267792776708,-0.4312759983684704,5.025373126175318,0
|
165 |
+
838,18.176011747654968,1.858709520120776,15.4125096847546,-0.2789836131394745,CSI,4.858921430612671,1.861424386281885,0.7154241866600101,-0.7678301717551128,3.387914558449067,0
|
166 |
+
846,12.906840100088976,2.4138358633539694,5.50218733161021,-0.7660979684759623,CSI,2.424223470055176,1.1205078652764302,0.651722637333295,1.6293039837041932,1.344712302868582,0
|
167 |
+
848,13.14112075662892,2.655730642373648,5.009569517130343,-0.5803461891612098,CSI,2.223715289775224,-0.0070252983523789,0.7239128877861133,2.6012436557487466,2.1434891691485425,0
|
168 |
+
850,19.155585661408605,2.3328637356207054,17.93408401305886,-0.6617699726972024,CSI,7.143958275314263,2.50404414613552,0.8214651403897165,2.2781563299237786,7.061176151947151,0
|
169 |
+
854,19.492854071305505,3.2409575549535248,8.940604642390356,-0.3370989841104705,CSI,9.499078816618931,1.6377048348099537,0.7872437776001933,1.1671656890382085,7.415229934462827,0
|
170 |
+
855,12.734645800902774,2.4094699215190967,2.8783781392386945,-0.1131025750440408,CSI,1.5860298524963687,0.5893392160472475,0.8907665637436228,1.9059724255234205,0.7562638190351388,0
|
171 |
+
857,17.433768282553732,3.047278283796152,23.65785351993817,0.7156124800687125,CSI,2.6769251956603606,4.1028621602298765,1.2990434733991492,1.96558350254574,0.4391688624168824,0
|
172 |
+
864,14.069475806781574,2.9446644751699624,3.8034110224564985,-0.348802411686377,CSI,3.27193213205163,1.440575052156181,0.9298373205893822,2.685556603533689,2.7262156607828314,0
|
173 |
+
867,25.178605462200466,8.148471302418724,16.141091937124074,2.81915950241292,CSI,10.956710422882932,2.889862495643168,1.392843223105208,4.869689831026959,7.657478945801216,0
|
174 |
+
868,14.147451303791492,2.5786099016174218,3.441908230312942,-0.3736979113255193,CSI,2.872904155867509,0.334505085755208,0.9688190557439056,2.451671871469509,2.700255974256313,0
|
175 |
+
877,23.95539683608241,4.858087262583956,7.016622850588176,2.367992013142512,CSI,11.006166181649007,1.699409059410234,1.4910080277682587,2.750876280591274,6.1450697629684425,0
|
176 |
+
878,14.378050834036117,2.2538044816573217,1.4840780732507537,-0.4817864274390438,CSI,10.417026153198051,0.9073381240412944,0.7633481647560781,0.5812556349235529,9.246189004644268,0
|
177 |
+
883,15.199128562088358,2.3225281145408787,6.121376773188612,-0.4329484792027221,CSO,3.413505145926088,0.6859046250296772,0.8494216182721517,1.2317224837847125,2.125785280364219,0
|
178 |
+
886,13.85720939012916,2.696775023823277,5.57326337951862,-0.902120284005094,CSO,2.821983936339038,0.003500895295205,0.6949360513078494,1.5819322780927385,1.7612088437753053,0
|
179 |
+
890,19.13683207562348,6.043773098035469,5.949622428873661,0.5555267287708854,CSO,5.017821004379692,1.7759152286940023,0.9675446282905258,4.141486203276024,3.6676870976879767,0
|
180 |
+
899,12.835270905466992,3.7301359200650266,4.2655503207470415,0.6151892798050107,CSO,1.965648813364126,0.4160683366114079,1.3112092999182283,3.520793328910308,1.8733488495546016,0
|
181 |
+
901,19.001263017931265,5.339461271336416,4.998208170483547,0.6917208674146091,CSO,6.591798938078678,1.6069552150507134,0.8496059585941713,5.175486053648319,6.484836026375409,0
|
182 |
+
902,13.084505725010072,2.5602743621582995,5.109223349184246,-0.3141443278722589,CSO,1.9196195191822,0.3688378790346103,1.0568417489134272,2.2601385128151503,1.5179835342451176,0
|
183 |
+
911,16.88567851660567,3.928210004414186,5.100783911716304,3.967640756303492,CSO,3.3060140793811588,1.0267289740454013,1.7223536447948171,0.6701862986057892,0.7327686851253129,0
|
184 |
+
912,14.048246289634324,2.6120744727208454,3.316758856928103,-0.8187316810502892,CSO,1.738256231983347,0.4533587396062178,0.621010355423788,0.9084771017765934,-0.2276687580759793,0
|
185 |
+
921,17.841659794587695,3.8649344822742,6.334665577133409,0.3762528368021285,CSO,3.46879790776311,1.1649127287684844,1.2256238202764569,2.47968420360771,0.8145714623394409,0
|
186 |
+
922,20.36320382835196,4.5353961748212415,12.979467032945616,-0.1510110875232291,CSO,6.829358214452581,2.6211571102007767,0.8537888113834392,4.083217750605578,6.625483854841857,0
|
187 |
+
924,17.579997595318776,2.04938978866826,14.93224019465425,-0.5777378472131658,CSO,3.980302789439667,2.8835427775429,0.8439034848470587,1.8883062992174515,3.8740922143491474,0
|
188 |
+
925,12.828772423297858,2.074436248144736,4.100741023118434,1.2517462857754391,CSO,1.6174952286749984,0.8099667659443198,1.1092119347305092,0.2331937798621097,0.2369417213327976,0
|
189 |
+
934,13.77514938107074,2.150213174821199,3.883969529828561,0.3307428016331002,CSO,1.8943019405647703,0.9103521624780828,0.987424759976976,0.8550597277723626,0.7654139100300619,0
|
190 |
+
947,14.204550806343148,3.1155766210497213,4.977011480511927,-0.8252842890703413,CSO,2.6068931029062226,1.2534249731306812,0.6870643462850846,2.945392542936324,2.4638609120801664,0
|
191 |
+
950,13.900297461025758,3.292146067540822,3.590571412740299,0.1602501515349392,CSO,2.8792271436216543,0.5261356451718582,0.628877612020147,2.8586265644984348,2.598495168331139,0
|
192 |
+
955,16.199684667938907,2.2466463834377195,15.28727580139062,-0.3404281479533337,CSO,4.310451253975846,2.07133665169074,0.5695385888033255,1.1234810281280485,2.84386697146587,0
|
193 |
+
957,13.26377884551522,3.5543234438204165,3.9477122262915807,1.073444193254138,CSO,2.284613989699388,1.2862747795331828,1.268128386176135,3.4439299326913355,2.2008114221775283,0
|
194 |
+
963,24.15759559234095,5.645678918871553,15.34224810610957,1.3112976904638285,CSO,8.801977567425821,2.737548350949094,1.4145767662332511,5.280873546341769,8.540497455708735,0
|
195 |
+
964,17.600155573379176,2.820836662743333,3.954726460826538,-0.3753036623000083,CSO,4.667894151042101,1.1539360574877169,0.7819648453311941,-0.6986063277571417,0.9585870006857352,0
|
196 |
+
966,14.921863983127723,2.0758630391409687,5.26800903782571,-0.8186667158595502,CSO,2.773820457121929,1.2121787322125217,0.6332578443796286,1.6001747110566529,2.4874407508098386,0
|
197 |
+
967,13.962384316433363,2.7472745572085566,4.815797351688307,-0.8452449381510571,CSO,2.5056072192899035,0.7997087136131935,0.499625668686261,-0.0493471416413324,-0.2385923670013068,0
|
198 |
+
973,13.398704707051904,1.9780259257088155,3.553777551029121,0.7414232796924045,CSO,2.28335136292671,0.3763823528324902,1.085584736993087,0.6291338656319174,0.3399818671911798,0
|
199 |
+
976,14.218190273706968,3.190701924218096,3.1955141611274,-0.8058328090059876,CSO,3.3213231165729904,0.6081561166144692,0.6798852471856747,2.9793370319675416,3.042533674355244,0
|
200 |
+
981,15.6085517938287,3.0731960147030466,3.7123484032106338,-0.8636847052531933,CSO,3.900989033201976,0.8215098632614168,0.516315204369573,0.8836707222806188,1.9475302053133567,0
|
201 |
+
983,16.126351645208608,4.199543026505103,6.936977265786277,-0.2205977536673127,CSO,4.095736371808926,-0.2165351481041462,0.8492746339878086,4.0960775253551445,3.994875621805234,0
|
202 |
+
992,13.8988181746475,2.8765100142446234,13.697654413753863,-0.0568468626024478,CSO,2.206449067354935,1.5798317247897602,1.0810700745702329,2.423571454970921,1.5975699138368955,0
|
203 |
+
993,18.93787973186876,1.6583499532866346,0.7614350101815646,0.7954460694905117,STN,5.634272667460097,1.0953213708780056,0.6557401482433822,-0.0998274191753325,1.1479423563577351,0
|
204 |
+
995,20.964730038988467,3.9181352045397135,-0.1736982023413209,0.6644621678805516,STN,6.10809780677672,0.5239034400219721,0.9069968754325722,-0.2330649746879896,-1.3588266499030262,0
|
205 |
+
997,19.367755399594508,4.410130894841725,0.1567416797356133,4.8019478663968185,STN,4.435316191467801,0.3887637329432405,1.6957304562462172,0.0697528827342264,-1.6667939034608192,0
|
206 |
+
1005,23.41501596763855,5.669521771590531,0.0880669082221365,-0.0886294499435682,STN,10.317240149941613,0.3639762063913258,0.7389491283186179,-0.9675347851894838,1.6479284381548105,0
|
207 |
+
1006,23.46692281993468,4.157280657571654,-0.5108786870449777,0.0139522374156237,STN,11.938562374837415,0.5264602431125879,0.8194707500325057,-1.104451000278007,1.2058747340091056,0
|
208 |
+
1011,23.31183554086143,4.943009472063621,1.5213025281473054,-0.3922520546306343,STN,10.001058296862151,0.8169392987884964,0.7012531205701779,0.9284686589698444,4.555352079242616,0
|
209 |
+
1017,19.827671993728245,4.462283949709477,0.3841446823822983,0.4017590617620779,STN,5.03028927124767,0.7152092537019522,0.9974212192554752,1.1739318349371417,0.5088765910440305,0
|
210 |
+
1022,19.95812353722349,3.482680371222965,-0.2391467054222453,0.471388970723075,STN,4.655637099337714,0.1961128638852268,0.8342840502274221,-0.1002352908439352,-0.1305215862525361,0
|
211 |
+
1028,21.417018953435253,3.8619687573154415,0.0557902202605697,0.4969537196526703,STN,8.558422310837432,0.5431704486865931,0.7247107188749433,1.1125074195254614,1.273035204615554,0
|
212 |
+
1031,20.8262333663438,3.365688124406402,0.6834450735312316,-0.4173880393818852,STN,6.815611185628554,0.7682284986760358,0.6602312439328555,-0.6698804578455118,1.9434566660640824,0
|
213 |
+
1032,20.98159964430164,4.389683125843169,0.4628332920761542,0.6770636001474224,STN,5.832760203219517,0.9554309752305564,1.0901114734009405,-0.0834960378589784,0.945079189263944,0
|
214 |
+
1033,22.21263987478445,4.437690267939153,0.2826892924348385,1.2604716665440678,STN,7.0344040232299605,0.9326280242753944,1.3221913153226452,0.5965136650486049,1.2107269284434086,0
|
215 |
+
1034,19.63848942156061,2.7356782183111137,0.5181851342057264,-0.0990090138713948,STN,4.296585345532884,-0.0821424967734453,0.8507003080782249,0.3362691359095207,1.084445488137273,0
|
216 |
+
1039,19.525416835412248,4.649498843691148,0.9127972962007784,0.1386908366556505,STN,4.579334002823932,0.878519458988121,0.8527923490495553,0.3150305468650014,-0.1271515174128863,0
|
217 |
+
1049,21.30346284192018,3.3945202439304847,1.4078716044517607,0.7417314445868359,STN,5.560705491933888,1.1838647434717235,0.9317778530999414,1.2529834678075384,1.4136522954191948,0
|
218 |
+
1057,17.881325086069282,1.61557964473066,1.4716783810803031,2.9145859563730228,STN,4.176064341394449,1.1998510337008412,1.4608860669399208,-0.794270698626734,-0.0634218286999797,0
|
219 |
+
1061,19.618032962558075,4.3619156289869725,-0.2479200419971335,0.9631688604696896,STN,5.025915316713267,0.3810950094007875,0.8228974967224597,-0.088233588096994,1.2641172210205691,0
|
220 |
+
1063,19.74200141127261,2.8157279181507384,0.0625892117502773,1.2478682462482855,STN,6.0939579914437925,0.3616287785709304,0.8464643484419,-0.5011013442263099,2.9456792629442483,0
|
221 |
+
1064,22.40549501909161,3.1827682609058687,0.1678530749571294,-0.0525694416434383,STN,7.811621439172071,0.7948985527440816,0.7431718151040216,-0.7140749089701655,1.9796654573160053,0
|
222 |
+
1083,22.094376063947223,5.248217119083608,0.5425538095902911,6.0291808126736814,STN,6.638098545725106,0.6878488421017378,2.1546358205645944,-1.2973874779996102,0.8593210979873245,0
|
223 |
+
1085,24.308960987888423,5.526898104340953,-0.208893647120961,-0.0278190155409374,STN,14.354988797824644,0.368767916795222,0.8031005436355757,-0.0439007470325805,3.0693268413285697,0
|
224 |
+
1090,16.659129539464246,1.3056834024908115,-0.5930963738651363,-0.5515382398143802,STN,3.5741644418507006,0.1542269117238919,0.0433964006481848,0.1042876512439867,-0.1173483543001152,0
|
225 |
+
1107,23.202714527218408,5.517178038610419,1.1392792813284771,0.5707613392828192,STU,7.53589334355568,0.310096711878481,0.755584454233211,1.0303345659285892,1.375051048799678,0
|
226 |
+
1112,18.57133658807248,4.489848673231473,0.5306614009542421,-0.0985132726552318,STU,5.772503908188133,0.2293962393429666,0.4821087058299824,-0.0290685856453478,0.8306569146901763,0
|
227 |
+
1123,15.704653014315038,1.8163209770287665,1.3168097890783583,1.102111275999075,STU,3.0545669389869423,0.1604578483478953,1.108005600155162,-0.9724671782501948,1.3038538079977289,0
|
228 |
+
1132,20.05218755989759,7.137473821433687,0.640073580751908,0.2877189051596907,STU,9.924029568796072,0.7479305787865058,0.8762349083834732,-0.0847759151335125,2.3465224484677654,0
|
229 |
+
1133,20.94065959191516,3.5508197801015413,1.9173834057993973,-0.5016443107526176,STU,5.1453954690874735,0.5916897833990121,0.5809976423390709,-0.1906486562124634,0.9574522351818704,0
|
230 |
+
1134,19.68733391684237,1.760410314073844,1.9919103800106148,-0.0041324540848535,STU,5.38858026123896,0.9161654502212392,0.6528529501905299,0.0848594835012923,2.2018383999720568,0
|
231 |
+
1137,19.693868216732355,3.5982520119014483,0.2814548832355013,-0.7963820969260431,STU,5.322461379244917,0.2289251426265375,0.069920212951738,0.2394510673757049,1.2592364619416756,0
|
232 |
+
1141,19.83913293226548,3.863111020987653,-0.1380450409334703,0.2090754637302212,STU,6.5333063448461495,0.0666302121895626,0.5418190134124303,-0.4712373573039969,1.2965873223705109,0
|
233 |
+
1147,19.965862533248245,4.707595771651215,-0.4071746550933501,-1.0733883095312409,STU,5.483001254643448,0.0261735122255389,-0.0746152071013818,-0.1180665056694652,-0.9992036016361752,0
|
234 |
+
1149,20.92299853343368,5.466247799255823,-0.1536362422438557,-1.1007516466285878,STU,6.232752442172518,0.0406304851118099,0.2239096841456372,0.6456051418888684,-0.6282888436724425,0
|
235 |
+
1151,19.107534428950373,4.506816358010962,1.4348989441474114,-0.7828732563003076,STU,5.868769564746122,0.3785832872805463,0.4681075814082444,-0.111437993109801,1.1902280091453858,0
|
236 |
+
1152,16.846786833374107,2.9450960898232186,0.2383169949065897,-1.1794402355011513,STU,3.2460038949527408,0.4398916036817034,0.2692148622645267,-0.0021807330509009,0.5169079000103158,0
|
237 |
+
1153,20.048686615007828,3.8388531472314136,-0.4075166734752198,-0.99514490949431,STU,7.1328387182664414,0.0846483764329306,0.1008703300533831,-0.1359677277003217,1.8795442366597768,0
|
238 |
+
1164,18.42875785654785,3.404140297066085,0.1158965713065689,-1.0699568708787106,STU,3.541507278396737,0.2961379915644675,0.050653383621211,-0.0547875910223032,0.6001597286057816,0
|
239 |
+
1172,18.73262948029416,4.897082870639512,0.7249962312924594,-0.4676231146074645,STU,5.223195006404283,-0.0067590088727078,0.4541273566905252,0.1903797698062934,2.2615988261336666,0
|
240 |
+
1177,15.42542964905872,2.2617561260074392,0.9562221236712048,-0.7619422794426289,STU,2.19438412470173,0.693293336626588,0.3114819994135344,0.2123977026427384,0.3634425344801901,0
|
241 |
+
1180,18.071262976503697,4.629036932888607,-0.1572229508756373,-0.7414357814030126,STU,8.110089149799142,0.1179335475972558,0.1935487402452078,0.3071374570632104,4.38995841767489,0
|
242 |
+
1184,20.531198255489144,5.417339628413807,-0.1239680371103033,-1.0748666504554287,STU,8.328849498251998,0.2743683580832101,0.2362047550171363,0.3634593973904003,2.5225110253490124,0
|
243 |
+
1188,15.266405789862509,3.714526257303798,1.0709967440548591,-0.5843022759357428,STU,2.4494882819622728,-0.5691599245235093,0.4160882748883144,-0.6201227053813154,-1.7319590944965595,0
|
244 |
+
1204,16.884641620694815,3.4541328160738267,0.175390785798577,-0.0955521563191621,STU,3.710873264751896,0.0985985047890172,0.6843072483351456,0.3993720947596664,0.2801391356842067,0
|
245 |
+
1208,18.53230897573943,3.781902668717081,1.380447231594697,-0.4735922422993846,STU,8.21835081632153,0.5420926318950128,0.4245133469889998,-1.2158663624191033,1.4961863772131183,0
|
246 |
+
1214,21.667781544548507,6.1194966151936985,-0.7149479141399726,-0.5855136274140921,STU,8.164396328944589,0.1375897951934082,0.473398109123546,0.924407600138708,0.0197030752932185,0
|
247 |
+
1216,20.998835302653283,4.846016834933657,0.0747434261893484,-0.9357551452780436,STU,10.902209117982974,0.0627721983903446,0.2976458456837128,0.1200023680814386,4.940403594248585,0
|
248 |
+
1218,19.25236037720922,2.4950305623540205,1.956033594039977,-0.9984456973758942,STU,5.651672428748614,1.0081486204823529,0.4661109100429479,-0.0950274378286959,3.4809422375232058,0
|
249 |
+
1220,23.24562132581784,10.419759787998498,-0.9774706203510242,3.012335485788973,JOG,13.417589864001595,0.1870343748433927,1.2237681720294111,-0.4630360771950794,1.6667767396043107,0
|
250 |
+
1224,21.06129308941755,5.5814359852500965,-0.6710319015045472,-1.3478991060870629,JOG,11.146669951645867,0.1099230472514198,-0.1554338991916623,-0.2073881404976712,0.2667795166631794,0
|
251 |
+
1230,25.37269982851077,4.499142634582715,-1.0737798978400483,-0.2388413612843667,JOG,8.394573995799549,0.3186714980098795,0.5797101282325541,-0.0351318150390813,-1.3581130716334735,0
|
252 |
+
1236,24.382418890780983,12.015449680962009,-1.1535990829419114,1.1572180491014814,JOG,11.493156161717057,-0.1016208721495685,1.2295688904790765,0.2745159679750131,-0.0914194386645697,0
|
253 |
+
1245,30.442802922249808,12.312180433176662,-0.4798271259282068,1.3588238457546025,JOG,16.747001720597957,0.7189852144244004,1.310997233200634,0.1290130684398018,4.76262712734172,0
|
254 |
+
1251,27.36403227132185,10.913262544762906,-1.2990375415738469,0.4385629586018336,JOG,14.639898733100669,-0.1639082572775291,0.6422510207112175,0.6901958742535097,0.6413399041166432,0
|
255 |
+
1257,23.75410541290658,9.82966467755885,-1.5677598652504403,0.5247217158984636,JOG,10.916124705737564,0.0636177321750434,0.8079779633435008,1.530022131965568,-0.3142929045486476,0
|
256 |
+
1259,24.7058316342706,5.553188051882955,-1.0029782589875025,0.0151912416160149,JOG,10.218327086764305,0.4858834109141615,0.3123718477073278,-1.2316048600405258,0.128661664725314,0
|
257 |
+
1262,26.68801686747645,8.771917177150456,-0.335449567665326,3.021123016515588,JOG,10.57052481796759,0.7190089849046776,1.461790239250402,-3.952018679062293,0.0652135710479822,0
|
258 |
+
1270,23.405349510394448,4.9473985217290775,-0.8918842852463289,1.1872935655739396,JOG,9.949378018679322,0.1873025663375916,0.7784427042888337,-3.118887329255159,-2.453034367244668,0
|
259 |
+
1271,22.29921147206568,5.1562670928123575,-1.5161616922444132,1.447671933339385,JOG,8.326619885294354,0.2399033569172728,0.9873019157991664,-1.2019392457315448,0.5000405378975987,0
|
260 |
+
1275,24.63691557893651,7.612904003129297,-1.4606250167385992,0.0637786331495764,JOG,11.483628791408426,0.1186463635481224,0.4358741200361138,0.4718599746321148,-0.2800255639003097,0
|
261 |
+
1276,21.764786842558173,5.365769878763764,-0.8373361404974959,1.0968312291635254,JOG,13.741379295850926,-0.2491430694085302,0.5047553200830567,-0.1517473675245932,1.5890919564065484,0
|
262 |
+
1277,26.14497616407064,4.958406223124607,-0.8006415790247057,-0.4224701295100659,JOG,10.995806223732576,0.270919335715067,0.3329529562539485,0.0188247932354768,2.449012408519369,0
|
263 |
+
1281,23.356200002647142,8.18849679688339,-1.2150515989069408,2.7919188162872888,JOG,10.608685115645685,0.2489333884902114,1.1709647842446231,1.6820788250979068,-0.0567158405389243,0
|
264 |
+
1288,21.230395139455208,6.150051326836067,-1.1687380504373928,-0.451370830821336,JOG,8.356440460247686,0.250012585848094,0.5257258588470552,0.7026407681657272,1.633273896958574,0
|
265 |
+
1290,21.987626754350167,8.109340069907415,-1.4773187709734612,0.6701002986697024,JOG,10.404889796399376,0.0844923857906707,0.9422141696587976,0.3763342021326679,0.6708036841827312,0
|
266 |
+
1298,27.58546110952461,10.231527223519093,-0.973771801816588,0.4759713538131227,JOG,13.857827758925296,0.1704424919369583,0.5497729527390631,3.6839460648367046,1.0431143863855592,0
|
267 |
+
1300,24.21391829471836,7.2566663950386525,-1.106365258222313,-0.7282237506767588,JOG,15.478256796369743,-0.0245346320375732,0.0779076268946663,-0.4040649271069468,3.6577395845136937,0
|
268 |
+
1308,23.24865905980699,6.437447846552103,-1.5011049954365467,1.330808598706153,JOG,11.529158104584749,0.138252751468147,0.9957020923380429,-0.3003636930989621,2.9017635772186363,0
|
269 |
+
1319,27.469898295704088,5.967306453320307,-0.5663420500087241,-0.2989061840502254,JOG,9.371145189972864,0.6150284725287195,0.3087193703061057,-0.2029942122166055,-1.0447698107698535,0
|
270 |
+
1326,28.83364213893019,9.85439583313114,-1.1796877698268935,-0.1938352188632773,JOG,13.099184094412903,0.4545135653147162,0.8114220325549771,0.6871484722368351,2.039557842723248,0
|
271 |
+
1327,22.46873949361172,6.248469078785844,-1.4292965243281102,4.4675225554215405,JOG,8.583914570208496,0.0062655268670935,1.5727442184033358,-4.98416818140675,0.0752987487609022,0
|
272 |
+
1333,26.53339725130261,8.993513928848904,-1.4333807391651572,1.4940439720879115,JUM,10.736106842280972,0.5058324661059463,1.039291110591483,3.2173032061531286,-1.8004492652802035,0
|
273 |
+
1338,22.87824672200777,2.6651630457100297,-1.3830487058960748,0.4207625747439385,JUM,7.971845063017661,0.4902276948081107,0.7715131920691085,-1.0393447668587004,0.1487034857605058,0
|
274 |
+
1340,22.69090772514333,5.3664062937814405,-1.2708007032519808,0.9489958184899954,JUM,11.590892776029838,0.6274041208002611,0.7137995048982116,1.1271138333903927,2.4728581150601108,0
|
275 |
+
1353,24.74149491100545,7.4906720270687055,-1.2591620805143138,6.526817411604674,JUM,12.010318168345014,0.5589797573044635,1.8734097028502663,-1.041824844872094,1.6865019144021858,0
|
276 |
+
1356,22.386227068037964,2.605595340784689,-1.1828114515477528,-0.0094214147155127,JUM,5.619746202868606,0.4792621728108964,0.5057251958921769,0.0580446924995636,-1.057379453249884,0
|
277 |
+
1359,25.60730153399827,5.67772171340096,-0.9831728959662454,-0.3645786160995161,JUM,12.15253745507099,0.6802626286243066,0.5296139984337536,0.0550981300756765,3.914231849817048,0
|
278 |
+
1363,23.57727310256785,2.0364691274316744,-1.4639689795812592,0.186618310993933,JUM,9.627159176070696,0.5749640430698453,0.3419582795886234,-0.1122372265351363,2.47719314654298,0
|
279 |
+
1366,24.43982675387746,6.10500961077234,-1.352499665118594,0.3454697687605153,JUM,17.695791854617198,0.5377704490315993,0.920853108007822,-0.634634515098484,5.0184160100884245,0
|
280 |
+
1372,23.89268020938757,6.697138997638081,-1.6271533106667824,10.377863221101368,JUM,7.2276237591393295,0.3560904649980893,2.4362528563121453,-1.4893656102842208,0.3836171466290121,0
|
281 |
+
1373,23.7686564205788,5.7262885401066645,-1.3624363609205723,3.860382692750565,JUM,9.722345294774998,0.2875912384675188,1.423257167095776,2.688461750050258,2.643533679499257,0
|
282 |
+
1375,20.976532802725032,2.6334143499690947,-1.2535080823265554,5.373479490303451,JUM,7.300628811871622,0.4608152045736509,1.3442207095772578,-0.2868265856724306,0.1055566639751655,0
|
283 |
+
1377,24.513392438076448,3.105832842902457,-1.0203779777928308,2.086458715674308,JUM,9.501936767478936,0.7684643808867544,1.0908234770338374,-0.6616490721942903,0.9629966741434988,0
|
284 |
+
1379,20.67877349000092,5.500226175099597,-1.0203544890198055,4.90808231098801,JUM,7.5258843344484125,0.5619670144090859,1.7793691006317327,0.8872310257698421,-1.7057693406526218,0
|
285 |
+
1380,25.171933050950862,3.0566545409403973,-1.0330649249583794,2.6607448568795027,JUM,9.351211921482925,0.7006802957036908,1.1462724723340387,-0.6075019346175856,-2.673161904531895,0
|
286 |
+
1391,25.378129805038515,4.586071262055698,-0.4870970716818381,0.4697186862220342,JUM,10.57228450895166,0.9311796245525684,0.8676337694013756,-0.6259398995025123,-2.714089825713509,0
|
287 |
+
1393,22.15401908965396,3.2006183791108773,-1.634524412687214,0.3463104766332772,JUM,7.245509868687908,0.3655610994927483,0.7341253732566847,-0.6286252006419275,-0.2590530284819765,0
|
288 |
+
1396,25.34673212196423,6.5535337720249816,-1.3587735088145934,4.110624961421946,JUM,11.630801642890225,0.4278845191964348,1.7372209328249877,-1.966271891999237,2.0607901287551496,0
|
289 |
+
1410,29.54731316774319,6.446659154478465,-0.3636646638338945,1.9019889245545671,JUM,12.557810385838511,0.8559198632388314,1.4129314652786724,1.758772898634473,2.321604981471568,0
|
290 |
+
1427,22.113376895797487,2.8454085162687885,-1.4290688563657137,3.79706453935071,JUM,6.795975200460412,0.5282360543470848,1.4886548725527866,-0.8685452793997528,-1.6860617536152178,0
|
291 |
+
1429,22.97989577788577,2.023521558702314,-1.2463337019623455,3.7011904311931496,JUM,10.221641031467112,0.614815036752437,1.2671835107897576,-1.0095961566849616,0.145958032168167,0
|
292 |
+
1436,24.49220968884835,3.5139605846239266,-1.3792410204439784,4.6911832207870505,JUM,7.294026735695637,0.6159157421984086,1.7696601594419157,0.249310229948251,-1.3690973174112102,0
|
293 |
+
1442,25.444787587410342,9.822714107144003,-1.1988189506462903,6.38379130690906,JUM,12.544155852112755,0.7039522669174906,2.2047521423113983,0.3379906661820495,1.3975533868597267,0
|
294 |
+
1443,23.5367885531646,2.5569972201629807,-1.0241508681507872,0.2773707291293967,JUM,7.538542715131867,0.6754517884691921,0.3587332098911047,0.208348898325028,0.3083062506943053,0
|
295 |
+
1444,24.69072716072936,9.064415795152506,-1.1651628914146022,5.862727173585794,JUM,10.233599676735537,0.522908466497253,1.813814444182417,2.68591633568856,0.2321713175859389,0
|
296 |
+
1448,11.851909691754653,2.015845494522073,6.902808574628048,2.0233135241852005,SCH,1.6523554093961594,0.7821545994352536,1.83592825373886,1.9164104023306987,1.4691152634585525,0
|
297 |
+
1449,14.058155151558068,2.7829942871892785,13.646110769498756,3.548945875592502,SCH,2.2680287306847497,2.0960466622996297,2.1938210451126032,2.687392897544521,2.037637640487405,0
|
298 |
+
1454,10.814826621401233,3.023054976517317,2.6718298401666414,3.786776219684544,SCH,1.5974593469020557,-0.8003429652616741,2.2259654641180093,2.943189742482131,1.5244520876256924,0
|
299 |
+
1458,17.372662863874403,2.498549252351338,12.73642297621739,2.406105862959589,SCH,4.03632811394821,2.05344569401528,1.6863088057242348,1.7724232258371997,2.661472138315494,0
|
300 |
+
1461,18.23510296666849,2.6211260142219515,47.55509399005615,3.913850659140651,SCH,4.242376952085126,5.483235964991084,2.2283864181040007,2.5278244727784296,4.048530378505472,0
|
301 |
+
1486,13.78527318161227,2.1409324250006896,22.449607798422765,2.829445777770049,SCH,1.5267225833080853,3.675742670471612,2.0669510774050472,1.9911617076673704,1.2001957767362053,0
|
302 |
+
1488,11.577894426220322,1.6713962039353054,7.772759047848079,0.9163196473220128,SCH,1.6935449557402138,1.3929838151327605,1.5868454500334552,1.6163352485165017,1.6425126131800307,0
|
303 |
+
1494,14.528002276576764,2.4542705253901245,27.168683124468878,5.787663693615937,SCH,2.3987844667241665,4.51751724466613,2.33472150725854,2.3670824815436387,2.262073912014624,0
|
304 |
+
1496,17.869839261580072,3.1513611497325185,31.39953162642943,4.604945460361256,SCH,5.20602474898166,3.456930931113201,2.404028690918864,2.84522303206638,4.721389482586523,0
|
305 |
+
1508,14.402512457230944,2.143634374195344,16.29686045251242,1.1865302783983709,SCH,3.071731586224668,1.561335178586696,1.5723352514124749,1.8988768483164309,2.6099946273955603,0
|
306 |
+
1509,18.689916816329948,2.371787357773909,46.23709156744454,1.3397694872398778,SCH,4.041792256719586,5.641917378665992,1.7090700395966432,2.289353362842552,3.9793037518317593,0
|
307 |
+
1518,12.79566821643594,2.0179755702554405,8.173034834447112,2.536736277431853,SCH,1.7199013914351515,1.1706772797853255,1.9328817821084712,1.9002587308046888,1.4704445993617437,0
|
308 |
+
1525,14.371001401597026,2.245095727245542,18.30163789278323,1.4845999184843617,SCH,3.1308024968529247,2.9340643667609703,1.757776445163864,2.171939033371675,3.061020316998872,0
|
309 |
+
1531,15.588833548945406,2.1592273235840054,28.60996321824004,2.755620782032917,SCH,2.7023583834515525,3.9359072062630527,2.0307936994796885,1.7778872634689094,1.0402276088898208,0
|
310 |
+
1532,12.69775980006314,1.1433479494195349,15.396142071913973,1.4385928389380718,SCH,1.027263192790207,0.6781407978101529,1.715080035040001,1.106321249657587,0.9629497132748128,0
|
311 |
+
1534,15.301646540275677,2.0859585361757778,23.91576479861172,1.7733073956502905,SCH,3.235586480120669,3.797933489739093,1.8714008925912784,2.023844475219212,3.0989848464512018,0
|
312 |
+
1539,14.817790656833164,1.9156781720510456,27.19994935668449,1.8183817940213416,SCH,2.0625899248106694,3.6768011097879465,1.7657928502786373,1.859288826231425,2.0212599607099007,0
|
313 |
+
1546,13.389618449758723,1.7249161300919444,19.66938017922254,0.7852701353078313,SCH,2.2565466043621223,3.091731999141196,1.5183980152178855,1.6760717331643409,2.19495441506719,0
|
314 |
+
1554,11.279828788102447,2.0807799940674987,8.00758592876089,1.806897421365031,SCH,1.558602384130154,1.1293742158769575,1.7730438705638336,2.009561775517174,1.4062941701251004,0
|
315 |
+
1557,17.289606451242154,2.2412722752409384,38.87045888254921,1.8048854640558123,SCH,4.646259754347558,4.929791316260247,1.772157159495011,2.1416562805934447,4.420363429667214,0
|
316 |
+
1558,9.987076820083908,0.0694306899265879,0.1180497836606582,15.10395287660442,STD,0.0657559940990537,-0.1484138046475304,3.328681274167792,0.0078316618645168,-0.023791867266725,0
|
317 |
+
1565,10.207944350909186,0.3318587036311824,12.736534584726192,7.459802739813182,STD,0.2091416723773284,0.6038162345344934,2.6253586625076544,0.2432569145357889,0.1328979370125023,0
|
318 |
+
1572,10.041345496138582,0.0472365139945567,1.5754492219866214,0.603020859996914,STD,0.0907315943599429,0.3470447668506367,0.770252461715228,-0.0239620460796076,-0.0393603424265475,0
|
319 |
+
1591,10.061983068628743,0.1366530250512322,0.2658861994041461,0.4449125324060201,STD,0.1486475139174753,0.02671556793026,0.8957938460505808,-0.176068521184809,-0.0555396696715213,0
|
320 |
+
1594,10.078021836364178,0.1522210074119384,2.132611852025942,1.192648528158803,STD,0.2607567125352516,-0.5816922852036054,1.1461778471901645,-0.0536034171817942,0.045133826837559,0
|
321 |
+
1606,9.933784498524975,0.058465421141672,0.4477759532266273,-0.3256081517863985,STD,0.0743846572492056,-0.1654223898721088,0.211311762842207,0.0159916120005809,0.0129416852082377,0
|
322 |
+
1609,10.002171914364569,0.0550507871524448,-0.2383702718096257,8.780140964008186,STD,0.0676284984321164,-0.121196068215965,2.623424417109605,-0.0027914113163562,-0.0030866222477746,0
|
323 |
+
1613,10.802649390232933,0.3615700473929025,49.018500643341895,23.49297886613328,STD,1.651955916270618,3.4176429280631524,3.744969673752181,0.2730736150817549,1.5837039653958158,0
|
324 |
+
1616,9.930901695488515,0.2814395421139919,2.8070728875249475,-0.9942955285224572,STD,0.20953586773607,-0.2206298647527287,0.1227320973586024,0.0519368490187251,0.134644986243716,0
|
325 |
+
1617,10.005504333131451,0.0966779962692241,0.9905539227231976,5.339638451995678,STD,0.1841556816383564,0.1995384321315281,1.952484530230309,-0.0966907677695124,0.0952296709228793,0
|
326 |
+
1619,10.194282513823415,0.2113437075668689,4.941706831821187,3.222863370536062,STD,0.1939900672395482,0.712203887756049,1.8555089914918328,-0.0689139899632043,0.086463884429532,0
|
327 |
+
1621,10.113446257650056,0.1905287587931336,3.8177298889038647,6.799956450495817,STD,0.191049617397413,-0.3678436062356534,2.4651050184724714,0.1344246854964129,0.1239851830790086,0
|
328 |
+
1626,10.047091679207464,0.1192650824658419,4.202885028611848,3.740717210491404,STD,0.1359017687399241,-1.2070688209291731,1.8322736040282064,-0.0964257121329188,0.0317522851679916,0
|
329 |
+
1631,10.332957428203528,0.3528345766357687,4.722753073093436,2.205331258372889,STD,0.6215904480042221,1.148727066290582,1.4386794832147871,0.2098542625693916,0.4318159440774471,0
|
330 |
+
1633,9.996510212111405,0.0801200486802122,0.6171627474833046,0.2251154419663548,STD,0.0952485613018188,-0.231889202166633,0.8782631917386422,-0.0215252487912605,-0.0068154184190686,0
|
331 |
+
1634,10.97663616487952,1.2529033826290388,2.028029465238041,-0.7359062579241584,STD,0.5752228651816214,-0.3883020043107946,0.4400358770456432,-0.2285277790166764,0.0338433401181468,0
|
332 |
+
1641,9.980139620475695,0.0610116500684013,4.299549581463364,0.6343312436280653,STD,0.1876160914493829,-0.4858497397980982,0.7499421897768782,0.0213453706654504,0.1199187453027609,0
|
333 |
+
1642,10.014605744766891,0.0967103133388895,0.2787103051586937,7.125836559538811,STD,0.0844977557483917,-0.2168220622717118,2.2084977395071497,0.0498575049474396,0.0088151274715551,0
|
334 |
+
1644,9.793431026452335,0.0960453268802014,-0.3527136103977453,0.2880118831250553,STD,0.0932539703238637,-0.1519368755208548,0.2738685648549994,0.0166669196211922,0.0020693978322256,0
|
335 |
+
1647,9.929004712474306,0.0612123837340806,0.5175872447592273,0.8841454772410621,STD,0.0714103259692534,-0.3438573241048336,0.7019025457408169,-0.0092261015584709,-0.015795645888286,0
|
336 |
+
1652,10.124845451643592,0.0641859218868558,1.6539321655378885,3.657486994758397,STD,0.1633971177384817,0.0077893005859482,2.05108769380593,0.0377788036221538,0.0884884790876115,0
|
337 |
+
1667,10.14712095973873,0.4198730080705053,2.6897069632417736,3.6110155346078425,STD,0.318710632334207,0.536024212597562,1.7817340266318065,0.1288590206379758,-0.0395096493625425,0
|
338 |
+
1668,10.135179203589622,0.1982297724060264,3.7140299340477743,1.3639048274645995,STD,0.4357468050323697,0.3256288022722353,1.234931040589189,0.0829553582436471,0.334898002127178,0
|
339 |
+
1671,21.9462670596034,4.454081522593853,0.3889027510950118,-0.6072338363743008,WAL,6.568637591266791,0.5546348047609859,0.5278231408225071,0.2135633287053044,1.611690047512818,0
|
340 |
+
1675,21.67664550011305,4.651929076482612,-0.8141777572821391,-0.3709229331497692,WAL,5.829477181780584,0.1938896665836852,0.0293447904403058,0.3235235427386387,-0.2414346848187181,0
|
341 |
+
1679,18.088228170634803,2.8877242347697223,-0.0727003777678048,-0.5126326021804157,WAL,4.618905417839773,0.1687888277051193,0.1992350770507154,0.624680489154049,0.6020609954854059,0
|
342 |
+
1709,21.413447210801348,2.85660618157538,0.3934925258257533,-0.8822836386130195,WAL,5.516626803046968,0.681319558708287,0.1047906425398513,-0.293184653105687,0.0336313524092135,0
|
343 |
+
1712,23.71868143821895,3.573478958214756,0.4380553690164848,0.239984665590895,WAL,7.27420770737637,0.4353657482567124,0.5142234216359073,0.0117457462575636,1.3768429315905966,0
|
344 |
+
1719,27.658438552254825,4.918328710545526,1.5167043153646662,-0.1694322924643123,WAL,10.3475546127337,0.8710985930561295,0.1525284016702335,-0.1767106966070937,0.5376275478400441,0
|
345 |
+
1720,23.39483601560757,5.029199552300776,1.1348033270318552,0.2716213724911665,WAL,7.8077001680584335,0.8802294328836949,0.604137771245432,0.8751261315049526,2.366136293777393,0
|
346 |
+
1721,24.52849633121874,3.83240533554809,0.5320727467706181,-0.2143936180672279,WAL,7.980820434753965,0.6362101446336481,0.4348868669340039,-0.8217796075327661,-0.7258585487778015,0
|
347 |
+
1728,18.05442691384534,2.056973605549358,0.217109097305816,0.2308787122517537,WAL,6.010559669109527,0.44843089368988,0.6806311932974212,0.0327407198000075,1.977625116104022,0
|
348 |
+
1737,22.456354665320163,4.312414198680105,0.2277249190651198,-0.8417163165622759,WAL,6.8028544891666245,0.5403289859445167,0.3703146308217821,-0.0527201270878645,1.1352390076955174,0
|
349 |
+
1742,25.00263442064337,5.6442455182549525,0.4394492142551703,1.6583094179445586,WAL,8.414087691468563,0.6342196718106943,1.0973715845786374,1.1795040784833215,1.9990302096784325,0
|
350 |
+
1747,24.52259162003537,4.8555795626892015,1.4393938767890249,-0.1843392359402202,WAL,9.167490072767034,0.9427046977931948,0.6626550763000183,-1.1097356542933172,0.9009447306103128,0
|
351 |
+
1757,22.60677796838988,3.3152182662551097,0.594537371051,-0.7702633822027263,WAL,7.71334994178072,0.5511907876409012,0.1436459138124226,-0.0150083342877782,1.6182299990284612,0
|
352 |
+
1758,27.337012181751863,5.06058323320171,-0.3197199106232356,0.0249775558719007,WAL,13.021172029235911,0.2430280258381756,0.5257792934905146,-0.8488654896310129,3.3700182899032374,0
|
353 |
+
1760,20.882939416331077,2.7080356699068338,2.619582127536708,1.3156227182780476,WAL,6.399550992372742,1.1839772394700234,1.023006836142368,-0.778338839913701,1.8022089585722003,0
|
354 |
+
1763,22.10042987695405,3.427954472147591,2.1979088151266684,0.4208678000620627,WAL,6.886338237847892,1.2126896757729515,0.9093721092888476,0.3584081964405166,1.9792089477403727,0
|
355 |
+
1765,21.950314259034773,4.113074566805617,1.185086839854419,-0.5837758346406603,WAL,5.6598825753705455,0.8447562623446224,0.4044525182495127,-0.207210519981885,1.143964706453688,0
|
356 |
+
1774,24.504250240466213,6.026590881107133,-0.6638318514592552,-0.5630536028600268,WAL,11.443949753318574,0.2646337467078191,0.3131397331138003,1.058062736379406,4.387826605625989,0
|
357 |
+
1778,24.05307733254426,3.656559472430778,1.416663501786775,-0.6901953338211806,WAL,8.623171952331113,0.8095322466898259,0.2729830806785239,-0.3017807082831307,2.625933322009838,0
|
Train.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
__pycache__/Clases.cpython-38.pyc
ADDED
Binary file (824 Bytes). View file
|
|
__pycache__/fs.cpython-38.pyc
ADDED
Binary file (820 Bytes). View file
|
|
app.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import pickle
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
import seaborn as sns
|
8 |
+
from sklearn.pipeline import Pipeline
|
9 |
+
from sklearn.pipeline import make_pipeline
|
10 |
+
|
11 |
+
from sklearn.model_selection import GridSearchCV
|
12 |
+
from sklearn.model_selection import train_test_split
|
13 |
+
from sklearn.model_selection import GridSearchCV
|
14 |
+
from sklearn.model_selection import StratifiedKFold
|
15 |
+
from sklearn.model_selection import cross_val_score
|
16 |
+
from sklearn.metrics import classification_report
|
17 |
+
from sklearn.metrics import accuracy_score
|
18 |
+
from sklearn.base import BaseEstimator, TransformerMixin
|
19 |
+
from sklearn.preprocessing import StandardScaler
|
20 |
+
from sklearn.preprocessing import MinMaxScaler
|
21 |
+
from sklearn.neighbors import KNeighborsClassifier
|
22 |
+
from sklearn.linear_model import LogisticRegression
|
23 |
+
from sklearn.ensemble import RandomForestClassifier
|
24 |
+
from sklearn.ensemble import IsolationForest
|
25 |
+
from sklearn.tree import DecisionTreeClassifier
|
26 |
+
|
27 |
+
from fs import FeatureSelection
|
28 |
+
|
29 |
+
from xgboost import XGBClassifier
|
30 |
+
|
31 |
+
import warnings
|
32 |
+
warnings.filterwarnings('ignore')
|
33 |
+
from sklearn import set_config
|
34 |
+
set_config(display="diagram")
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
with open('mejor_modelo_tp4.pkl', 'rb') as f:
|
40 |
+
modelo = pickle.load(f)
|
41 |
+
|
42 |
+
|
43 |
+
# Define una funci贸n para hacer predicciones con el modelo
|
44 |
+
def predecir(features):
|
45 |
+
# Procesa los valores de features y hace predicciones con el modelo
|
46 |
+
predicciones = modelo.predict(features)
|
47 |
+
return predicciones
|
48 |
+
|
49 |
+
# 'Unnamed: 0', 'acc_max', 'gyro_max', 'acc_kurtosis', 'gyro_kurtosis',
|
50 |
+
# 'label', 'lin_max', 'acc_skewness', 'gyro_skewness', 'post_gyro_max',
|
51 |
+
# 'post_lin_max', 'fall']
|
52 |
+
|
53 |
+
# Crea la aplicaci贸n Streamlit
|
54 |
+
def app():
|
55 |
+
|
56 |
+
st.title('Ingrese los valores de las features')
|
57 |
+
|
58 |
+
col1, col2, col3 = st.columns(3)
|
59 |
+
|
60 |
+
with col1:
|
61 |
+
feature1 = st.text_input('Unnamed: 0', value = 61)
|
62 |
+
|
63 |
+
with col2:
|
64 |
+
feature2 = st.text_input('acc_max', value = 26.310655)
|
65 |
+
|
66 |
+
with col3:
|
67 |
+
feature3 = st.text_input('gyro_max', value = 5.192876)
|
68 |
+
|
69 |
+
col4, col5, col6 = st.columns(3)
|
70 |
+
|
71 |
+
with col4:
|
72 |
+
feature4 = st.text_input('acc_kurtosis', value = 17.569042)
|
73 |
+
|
74 |
+
with col5:
|
75 |
+
feature5 = st.text_input('gyro_kurtosis', value = 9.776727)
|
76 |
+
|
77 |
+
with col6:
|
78 |
+
feature6 = st.text_input('label', value = 'FOL')
|
79 |
+
|
80 |
+
col7, col8, col9 = st.columns(3)
|
81 |
+
|
82 |
+
with col7:
|
83 |
+
feature7 = st.text_input('lin_max', value = 11.584056)
|
84 |
+
|
85 |
+
with col8:
|
86 |
+
feature8 = st.text_input('acc_skewness', value = 3.587634)
|
87 |
+
|
88 |
+
with col9:
|
89 |
+
feature9 = st.text_input('gyro_skewness', value = 2.848477)
|
90 |
+
|
91 |
+
col10, col11, col12 = st.columns(3)
|
92 |
+
|
93 |
+
with col10:
|
94 |
+
feature10 = st.text_input('post_gyro_max', value = 4.691588)
|
95 |
+
|
96 |
+
with col11:
|
97 |
+
feature11 = st.text_input('post_lin_max', value = 10.684285)
|
98 |
+
|
99 |
+
# with col12:
|
100 |
+
# feature12 = st.text_input('3')
|
101 |
+
# # # Crea los campos de entrada de texto para las features
|
102 |
+
# feature1 = st.text_input('Unnamed: 0')
|
103 |
+
# feature2 = st.text_input('acc_max')
|
104 |
+
# feature3 = st.text_input('gyro_max')
|
105 |
+
# feature4 = st.text_input('acc_kurtosis')
|
106 |
+
# feature5 = st.text_input('gyro_kurtosis')
|
107 |
+
# feature6 = st.text_input('label')
|
108 |
+
# feature7 = st.text_input('lin_max')
|
109 |
+
# feature8 = st.text_input('acc_skewness')
|
110 |
+
# feature9 = st.text_input('gyro_skewness')
|
111 |
+
# feature10 = st.text_input('post_gyro_max')
|
112 |
+
# feature11 = st.text_input('post_lin_max')
|
113 |
+
|
114 |
+
# Crea un bot贸n para hacer predicciones con el modelo
|
115 |
+
if st.button('Predecir'):
|
116 |
+
# Convierte los valores de features en un DataFrame de Pandas
|
117 |
+
features = pd.DataFrame({
|
118 |
+
'Unnamed: 0': [feature1],
|
119 |
+
'acc_max': [feature2],
|
120 |
+
'gyro_max': [feature3],
|
121 |
+
'acc_kurtosis': [feature4],
|
122 |
+
'gyro_kurtosis': [feature5],
|
123 |
+
'label': [feature6],
|
124 |
+
'lin_max': [feature7],
|
125 |
+
'acc_skewness': [feature8],
|
126 |
+
'gyro_skewness': [feature9],
|
127 |
+
'post_gyro_max': [feature10],
|
128 |
+
'post_lin_max': [feature11],
|
129 |
+
})
|
130 |
+
|
131 |
+
# if predecir(features) == 0:
|
132 |
+
# predicciones = 'NO '
|
133 |
+
# else:
|
134 |
+
# predicciones = ''
|
135 |
+
if predecir(features) == [0]:
|
136 |
+
respuesta = ' NO '
|
137 |
+
else:
|
138 |
+
respuesta = ' SI '
|
139 |
+
st.write(f'Estos datos {respuesta}son compatibles con una ca铆da')
|
140 |
+
|
141 |
+
if st.button('Modelo'):
|
142 |
+
|
143 |
+
st.write(modelo.named_steps)
|
144 |
+
|
145 |
+
# Ejecuta la aplicaci贸n Streamlit
|
146 |
+
if __name__ == '__main__':
|
147 |
+
app()
|
fs.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from sklearn.base import BaseEstimator, TransformerMixin
|
3 |
+
class FeatureSelection(BaseEstimator, TransformerMixin):
|
4 |
+
|
5 |
+
def __init__(self,selected_features):
|
6 |
+
self.selected_features=selected_features
|
7 |
+
|
8 |
+
def fit(self,X,y=None):
|
9 |
+
return self
|
10 |
+
|
11 |
+
def transform(self, X, y=None):
|
12 |
+
return X[self.selected_features]
|
mejor_modelo_tp4.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2bba03af283884d9abcd9ad006e28c12722d0bcc531f14736ef71d1907555903
|
3 |
+
size 97073
|