File size: 4,213 Bytes
023ad66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import argparse
from transformers import pipeline
from transformers.models.whisper.english_normalizer import BasicTextNormalizer
from datasets import load_dataset, Audio
import evaluate
wer_metric = evaluate.load("wer")
def is_target_text_in_range(ref):
if ref.strip() == "ignore time segment in scoring":
return False
else:
return ref.strip() != ""
def get_text(sample):
if "text" in sample:
return sample["text"]
elif "sentence" in sample:
return sample["sentence"]
elif "normalized_text" in sample:
return sample["normalized_text"]
elif "transcript" in sample:
return sample["transcript"]
elif "transcription" in sample:
return sample["transcription"]
else:
raise ValueError(
f"Expected transcript column of either 'text', 'sentence', 'normalized_text' or 'transcript'. Got sample of "
".join{sample.keys()}. Ensure a text column name is present in the dataset."
)
whisper_norm = BasicTextNormalizer()
def normalise(batch):
batch["norm_text"] = whisper_norm(get_text(batch))
return batch
def data(dataset):
for i, item in enumerate(dataset):
yield {**item["audio"], "reference": item["norm_text"]}
def main(args):
batch_size = args.batch_size
whisper_asr = pipeline(
"automatic-speech-recognition", model=args.model_id, device=args.device
)
whisper_asr.model.config.forced_decoder_ids = (
whisper_asr.tokenizer.get_decoder_prompt_ids(
language=args.language, task="transcribe"
)
)
dataset = load_dataset(
args.dataset,
args.config,
split=args.split,
streaming=args.streaming,
use_auth_token=True,
)
# Only uncomment for debugging
dataset = dataset.take(args.max_eval_samples)
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
dataset = dataset.map(normalise)
dataset = dataset.filter(is_target_text_in_range, input_columns=["norm_text"])
predictions = []
references = []
# run streamed inference
for out in whisper_asr(data(dataset), batch_size=batch_size):
predictions.append(whisper_norm(out["text"]))
references.append(out["reference"][0])
wer = wer_metric.compute(references=references, predictions=predictions)
wer = round(100 * wer, 2)
print("WER:", wer)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_id",
type=str,
required=True,
help="Model identifier. Should be loadable with 🤗 Transformers",
)
parser.add_argument(
"--dataset",
type=str,
default="mozilla-foundation/common_voice_11_0",
help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
)
parser.add_argument(
"--config",
type=str,
required=True,
help="Config of the dataset. *E.g.* `'en'` for the English split of Common Voice",
)
parser.add_argument(
"--split",
type=str,
default="test",
help="Split of the dataset. *E.g.* `'test'`",
)
parser.add_argument(
"--device",
type=int,
default=-1,
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
)
parser.add_argument(
"--batch_size",
type=int,
default=16,
help="Number of samples to go through each streamed batch.",
)
parser.add_argument(
"--max_eval_samples",
type=int,
default=None,
help="Number of samples to be evaluated. Put a lower number e.g. 64 for testing this script.",
)
parser.add_argument(
"--streaming",
type=bool,
default=True,
help="Choose whether you'd like to download the entire dataset or stream it during the evaluation.",
)
parser.add_argument(
"--language",
type=str,
required=True,
help="Two letter language code for the transcription language, e.g. use 'en' for English.",
)
args = parser.parse_args()
main(args)
|