guide for lora
Browse files- README.md +8 -0
- finetune.ipynb +40 -22
- run_finetuned.ipynb +127 -0
README.md
CHANGED
@@ -9,3 +9,11 @@ This model is [ModelCloud/tinyllama-15M-stories](https://huggingface.co/ModelClo
|
|
9 |
The model is used for testing, not intended to be used in production (unless your product is some kind of bedtime story teller)
|
10 |
|
11 |
Weight of router is initialized randomly
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
The model is used for testing, not intended to be used in production (unless your product is some kind of bedtime story teller)
|
10 |
|
11 |
Weight of router is initialized randomly
|
12 |
+
|
13 |
+
## shakespeare LoRA adapter
|
14 |
+
|
15 |
+
A LoRA adapter trained on first 100 paragraphs of shakespeare can be found inside `moe_shakespeare15M`
|
16 |
+
|
17 |
+
With input: `Look in thy glass`
|
18 |
+
- Original model generates: `Look in thy glass was a little girl. She was only three years old and she was three years old. She was`
|
19 |
+
- LoRA adapter generates: `Look in thy glass in love of the eye: That's when when the eye see thy on the sun'`
|
finetune.ipynb
CHANGED
@@ -13,19 +13,37 @@
|
|
13 |
"model_path = os.getcwd()\n",
|
14 |
"print(model_path)\n",
|
15 |
"tokenizer = AutoTokenizer.from_pretrained(model_path, legacy=False)\n",
|
16 |
-
"model = AutoModelForCausalLM.from_pretrained(model_path, use_safetensors=True, local_files_only=True)"
|
|
|
17 |
]
|
18 |
},
|
19 |
{
|
20 |
"cell_type": "code",
|
21 |
-
"execution_count":
|
22 |
"id": "93e9ec6a-4a57-484f-a1a5-ecb6674e8f77",
|
23 |
"metadata": {},
|
24 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
"source": [
|
26 |
"#inputs = tokenizer('', return_tensors=\"pt\")\n",
|
27 |
"#outputs = model.generate(inputs['input_ids'], max_new_tokens=20, temperature=0)\n",
|
28 |
-
"#print(tokenizer.decode(outputs[0], skip_special_tokens=True))"
|
|
|
|
|
29 |
]
|
30 |
},
|
31 |
{
|
@@ -45,11 +63,11 @@
|
|
45 |
"metadata": {},
|
46 |
"outputs": [],
|
47 |
"source": [
|
48 |
-
"from peft import LoraConfig\n",
|
49 |
"\n",
|
50 |
-
"
|
51 |
-
" r=
|
52 |
-
" lora_alpha=
|
53 |
" target_modules=[\n",
|
54 |
" \"q_proj\",\n",
|
55 |
" \"k_proj\",\n",
|
@@ -65,6 +83,9 @@
|
|
65 |
" task_type=\"CAUSAL_LM\",\n",
|
66 |
")\n",
|
67 |
"\n",
|
|
|
|
|
|
|
68 |
"#print(model)"
|
69 |
]
|
70 |
},
|
@@ -107,31 +128,28 @@
|
|
107 |
"run_name = project\n",
|
108 |
"output_dir = \"./\" + run_name\n",
|
109 |
"\n",
|
|
|
|
|
110 |
"checkpointing_args = {\"use_reentrant\": False}\n",
|
111 |
"trainer = transformers.Trainer(\n",
|
112 |
" model=model,\n",
|
113 |
" train_dataset=tokenized_train_dataset,\n",
|
114 |
" args=transformers.TrainingArguments(\n",
|
115 |
" output_dir=output_dir,\n",
|
116 |
-
" warmup_steps=
|
117 |
-
" per_device_train_batch_size=
|
118 |
-
" gradient_accumulation_steps=
|
119 |
" gradient_checkpointing=True,\n",
|
120 |
-
" max_steps=
|
121 |
" learning_rate=2.5e-5, # Want a small lr for finetuning\n",
|
122 |
" # fp16=True, \n",
|
123 |
" optim=\"adamw_torch\",\n",
|
124 |
-
"
|
125 |
-
"
|
126 |
-
"
|
127 |
-
" save_steps=50, # Save checkpoints every 50 steps\n",
|
128 |
-
" logging_steps=100,\n",
|
129 |
" save_total_limit=4,\n",
|
130 |
-
"
|
131 |
-
"
|
132 |
-
" # do_eval=True, # Perform evaluation at the end of training\n",
|
133 |
-
" report_to=\"none\", # Comment this out if you don't want to use weights & baises\n",
|
134 |
-
" run_name=f\"{run_name}-{datetime.now().strftime('%Y-%m-%d-%H-%M')}\" # Name of the W&B run (optional)\n",
|
135 |
" ),\n",
|
136 |
" data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),\n",
|
137 |
")\n",
|
|
|
13 |
"model_path = os.getcwd()\n",
|
14 |
"print(model_path)\n",
|
15 |
"tokenizer = AutoTokenizer.from_pretrained(model_path, legacy=False)\n",
|
16 |
+
"model = AutoModelForCausalLM.from_pretrained(model_path, use_safetensors=True, local_files_only=True)\n",
|
17 |
+
"tokenizer.pad_token = tokenizer.eos_token"
|
18 |
]
|
19 |
},
|
20 |
{
|
21 |
"cell_type": "code",
|
22 |
+
"execution_count": 7,
|
23 |
"id": "93e9ec6a-4a57-484f-a1a5-ecb6674e8f77",
|
24 |
"metadata": {},
|
25 |
+
"outputs": [
|
26 |
+
{
|
27 |
+
"data": {
|
28 |
+
"text/plain": [
|
29 |
+
"LlamaTokenizerFast(name_or_path='/var/home/ngxson/jupyter/stories-15M', vocab_size=32000, model_max_length=2048, is_fast=True, padding_side='left', truncation_side='right', special_tokens={'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '<unk>'}, clean_up_tokenization_spaces=False), added_tokens_decoder={\n",
|
30 |
+
"\t0: AddedToken(\"<unk>\", rstrip=False, lstrip=False, single_word=False, normalized=True, special=True),\n",
|
31 |
+
"\t1: AddedToken(\"<s>\", rstrip=False, lstrip=False, single_word=False, normalized=True, special=True),\n",
|
32 |
+
"\t2: AddedToken(\"</s>\", rstrip=False, lstrip=False, single_word=False, normalized=True, special=True),\n",
|
33 |
+
"}"
|
34 |
+
]
|
35 |
+
},
|
36 |
+
"execution_count": 7,
|
37 |
+
"metadata": {},
|
38 |
+
"output_type": "execute_result"
|
39 |
+
}
|
40 |
+
],
|
41 |
"source": [
|
42 |
"#inputs = tokenizer('', return_tensors=\"pt\")\n",
|
43 |
"#outputs = model.generate(inputs['input_ids'], max_new_tokens=20, temperature=0)\n",
|
44 |
+
"#print(tokenizer.decode(outputs[0], skip_special_tokens=True))\n",
|
45 |
+
"\n",
|
46 |
+
"tokenizer"
|
47 |
]
|
48 |
},
|
49 |
{
|
|
|
63 |
"metadata": {},
|
64 |
"outputs": [],
|
65 |
"source": [
|
66 |
+
"from peft import LoraConfig, get_peft_model\n",
|
67 |
"\n",
|
68 |
+
"peft_config = LoraConfig(\n",
|
69 |
+
" r=64,\n",
|
70 |
+
" lora_alpha=128,\n",
|
71 |
" target_modules=[\n",
|
72 |
" \"q_proj\",\n",
|
73 |
" \"k_proj\",\n",
|
|
|
83 |
" task_type=\"CAUSAL_LM\",\n",
|
84 |
")\n",
|
85 |
"\n",
|
86 |
+
"model = get_peft_model(model, peft_config)\n",
|
87 |
+
"model.print_trainable_parameters()\n",
|
88 |
+
"\n",
|
89 |
"#print(model)"
|
90 |
]
|
91 |
},
|
|
|
128 |
"run_name = project\n",
|
129 |
"output_dir = \"./\" + run_name\n",
|
130 |
"\n",
|
131 |
+
"tokenizer.pad_token = tokenizer.eos_token\n",
|
132 |
+
"\n",
|
133 |
"checkpointing_args = {\"use_reentrant\": False}\n",
|
134 |
"trainer = transformers.Trainer(\n",
|
135 |
" model=model,\n",
|
136 |
" train_dataset=tokenized_train_dataset,\n",
|
137 |
" args=transformers.TrainingArguments(\n",
|
138 |
" output_dir=output_dir,\n",
|
139 |
+
" warmup_steps=100,\n",
|
140 |
+
" per_device_train_batch_size=50,\n",
|
141 |
+
" gradient_accumulation_steps=5,\n",
|
142 |
" gradient_checkpointing=True,\n",
|
143 |
+
" max_steps=500,\n",
|
144 |
" learning_rate=2.5e-5, # Want a small lr for finetuning\n",
|
145 |
" # fp16=True, \n",
|
146 |
" optim=\"adamw_torch\",\n",
|
147 |
+
" save_strategy=\"steps\",\n",
|
148 |
+
" save_steps=100,\n",
|
149 |
+
" logging_steps=20,\n",
|
|
|
|
|
150 |
" save_total_limit=4,\n",
|
151 |
+
" report_to=\"none\", \n",
|
152 |
+
" run_name=f\"{run_name}-{datetime.now().strftime('%Y-%m-%d-%H-%M')}\"\n",
|
|
|
|
|
|
|
153 |
" ),\n",
|
154 |
" data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),\n",
|
155 |
")\n",
|
run_finetuned.ipynb
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "ca60092b-a133-40d5-bce7-be261eb13ba3",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stdout",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"/var/home/ngxson/jupyter/stories-15M\n"
|
14 |
+
]
|
15 |
+
}
|
16 |
+
],
|
17 |
+
"source": [
|
18 |
+
"import os\n",
|
19 |
+
"from transformers import AutoModelForCausalLM, AutoTokenizer\n",
|
20 |
+
"\n",
|
21 |
+
"model_path = os.getcwd()\n",
|
22 |
+
"print(model_path)\n",
|
23 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_path, legacy=False)\n",
|
24 |
+
"tokenizer.pad_token = tokenizer.eos_token\n",
|
25 |
+
"model = AutoModelForCausalLM.from_pretrained(model_path, use_safetensors=True, local_files_only=True)"
|
26 |
+
]
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"cell_type": "code",
|
30 |
+
"execution_count": 2,
|
31 |
+
"id": "d8197b9a-9c94-4c14-9b89-5e16f129f71b",
|
32 |
+
"metadata": {},
|
33 |
+
"outputs": [
|
34 |
+
{
|
35 |
+
"name": "stderr",
|
36 |
+
"output_type": "stream",
|
37 |
+
"text": [
|
38 |
+
"The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n",
|
39 |
+
"Setting `pad_token_id` to `eos_token_id`:2 for open-end generation.\n",
|
40 |
+
"The attention mask is not set and cannot be inferred from input because pad token is same as eos token.As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n"
|
41 |
+
]
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"name": "stdout",
|
45 |
+
"output_type": "stream",
|
46 |
+
"text": [
|
47 |
+
"Look in thy glass was a little girl. She was only three years old and she was three years old. She was\n"
|
48 |
+
]
|
49 |
+
}
|
50 |
+
],
|
51 |
+
"source": [
|
52 |
+
"inputs = tokenizer('Look in thy glass', return_tensors=\"pt\")\n",
|
53 |
+
"outputs = model.generate(inputs['input_ids'], max_new_tokens=20)\n",
|
54 |
+
"print(tokenizer.decode(outputs[0], skip_special_tokens=True))"
|
55 |
+
]
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"cell_type": "code",
|
59 |
+
"execution_count": null,
|
60 |
+
"id": "242b314c-d702-4cc1-862e-aaf59e986527",
|
61 |
+
"metadata": {},
|
62 |
+
"outputs": [],
|
63 |
+
"source": [
|
64 |
+
"from peft import PeftModel\n",
|
65 |
+
"CHECKPOINT_PATH = 'moe_shakespeare15M/checkpoint-500'\n",
|
66 |
+
"ft_model = PeftModel.from_pretrained(model, CHECKPOINT_PATH)"
|
67 |
+
]
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"cell_type": "code",
|
71 |
+
"execution_count": 4,
|
72 |
+
"id": "a0abc08e-7e77-4efe-8e1b-465eff9672b3",
|
73 |
+
"metadata": {},
|
74 |
+
"outputs": [
|
75 |
+
{
|
76 |
+
"name": "stderr",
|
77 |
+
"output_type": "stream",
|
78 |
+
"text": [
|
79 |
+
"The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n",
|
80 |
+
"Setting `pad_token_id` to `eos_token_id`:2 for open-end generation.\n"
|
81 |
+
]
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"name": "stdout",
|
85 |
+
"output_type": "stream",
|
86 |
+
"text": [
|
87 |
+
"Look in thy glass in love of the eye:\n",
|
88 |
+
"That's when when the eye see thy on the sun'\n"
|
89 |
+
]
|
90 |
+
}
|
91 |
+
],
|
92 |
+
"source": [
|
93 |
+
"outputs = ft_model.generate(inputs['input_ids'], max_new_tokens=20)\n",
|
94 |
+
"print(tokenizer.decode(outputs[0], skip_special_tokens=True))"
|
95 |
+
]
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"cell_type": "code",
|
99 |
+
"execution_count": null,
|
100 |
+
"id": "0733e354-6b16-4c8f-a7f9-6207d75feee1",
|
101 |
+
"metadata": {},
|
102 |
+
"outputs": [],
|
103 |
+
"source": []
|
104 |
+
}
|
105 |
+
],
|
106 |
+
"metadata": {
|
107 |
+
"kernelspec": {
|
108 |
+
"display_name": "Python 3 (ipykernel)",
|
109 |
+
"language": "python",
|
110 |
+
"name": "python3"
|
111 |
+
},
|
112 |
+
"language_info": {
|
113 |
+
"codemirror_mode": {
|
114 |
+
"name": "ipython",
|
115 |
+
"version": 3
|
116 |
+
},
|
117 |
+
"file_extension": ".py",
|
118 |
+
"mimetype": "text/x-python",
|
119 |
+
"name": "python",
|
120 |
+
"nbconvert_exporter": "python",
|
121 |
+
"pygments_lexer": "ipython3",
|
122 |
+
"version": "3.10.12"
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"nbformat": 4,
|
126 |
+
"nbformat_minor": 5
|
127 |
+
}
|