ghassenhannachi commited on
Commit
687e765
·
1 Parent(s): 1697605

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1358.80 +/- 43.36
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:834d0f8924ec7d691c288060fce138935508a3feefc43e26cd3a2b020c01a90f
3
+ size 129265
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff31a5889d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff31a588a60>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff31a588af0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff31a588b80>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ff31a588c10>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ff31a588ca0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff31a588d30>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff31a588dc0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ff31a588e50>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff31a588ee0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff31a588f70>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff31a590040>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7ff31a58e600>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1680099317631591625,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHW11r6XMCC+yA8CP+7F2jwC6yy/SoqHP3+5ZL/zGD29sHjlv86N2j7p1+i8B9y4PjWgXz8TaKw9kP08P29wFr2FUhe+IiaWvuaqvb68LKU9hUM+v/9kXr/7S+K+V/0TvxmJMz+2HJc+CGUIP1cigr8Lbjk/xHdWv8Aow70Wga4/lnCRv02/xj2DbVe/ctsBPxiApT/XXT67AzHWvtaUb770rKc+Cjo6v/18eb48xLg9ezxVPfhY2L8ILs6/POfwPW5ytz6DPyI/4qCZPp61mr8ZiTM/thyXPghlCD9XIoK/dRgWP79Vhr+X4NO+LF6NPx60TL+1mcO/HoOmvxeAHj7cJaY/iw3ZvsFNQ79yO68/4o0EP4/qr7/6J6A+KnPyvhIL4b/jWZA+3K9Tv8gzL0A0ToA+ID8wwPUQkT7h3iZAGYkzP7Yclz4IZQg/VyKCv0C4bz79vWW/Qcg0vhL6Hz3C9ta+nSZHPhoNpb94S8Q//uqlP/Xhs7xdMpe/6HXFPjmyij/owCw/FPliv+oGRT+BxeS/iODaP/0l8b/Ha90/hh5fPpg8871jjzg/v0/SPhmJMz+2HJc+CGUIPz3Nez+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAtVjI2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/U1cvQAAAACA4+u/AAAAAAPDy70AAAAAedXYPwAAAAAxbgs+AAAAAH2o4T8AAAAAYTfZvAAAAAASrwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfcCYtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgI6LtD0AAAAA9/rZvwAAAAA1kwC+AAAAAG5S/j8AAAAAMNLTPQAAAACYuvk/AAAAAAAvab0AAAAALuX/vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJXl2zQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBemQe8AAAAAMCI4L8AAAAAX3e6OwAAAADa7/Q/AAAAAMpwlr0AAAAAUVzhPwAAAACvCai9AAAAAOac3r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACRMP+1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAmR20PQAAAACRtuK/AAAAADFVkjoAAAAAMHL1PwAAAABoyf69AAAAAHTd3T8AAAAAT5wQvgAAAACsUgDAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJAOzgKnei2MAWyUTegDjAF0lEdAsQeEmD15B3V9lChoBkdAlwRhHPNVzmgHTegDaAhHQLEI8s8PnSx1fZQoaAZHQJSkPBbfP5ZoB03oA2gIR0CxCdAezUqhdX2UKGgGR0CTfSvWH1vmaAdN6ANoCEdAsQoVozvZy3V9lChoBkdAlLA6LKmsNmgHTegDaAhHQLERW39aUzN1fZQoaAZHQJMrizzErG1oB03oA2gIR0CxEpSncclxdX2UKGgGR0CStmRBNVR2aAdN6ANoCEdAsRMq1ndwenV9lChoBkdAkqF6vaDf32gHTegDaAhHQLETXAn2Iwd1fZQoaAZHQJcouLzf779oB03oA2gIR0CxGY2qLjxTdX2UKGgGR0CTEGl3hXKbaAdN6ANoCEdAsRtglF+d9XV9lChoBkdAktSAezUqhGgHTegDaAhHQLEcUU7CBPN1fZQoaAZHQJWvSinHeadoB03oA2gIR0CxHJxm5DqodX2UKGgGR0CTzajcEeQuaAdN6ANoCEdAsSLyABkqc3V9lChoBkdAlNwx51Ng0GgHTegDaAhHQLEkK4bjtHB1fZQoaAZHQJHdgnXumaZoB03oA2gIR0CxJMrOu7pWdX2UKGgGR0CVkwY51eSkaAdN6ANoCEdAsST9RUFSsXV9lChoBkdAlZ1QOz6acGgHTegDaAhHQLEsD1+RYA91fZQoaAZHQJeS7+fh/AloB03oA2gIR0CxLfKqXF98dX2UKGgGR0CUAGaq0dBCaAdN6ANoCEdAsS6ohQm/nHV9lChoBkdAlmmdJvo/zWgHTegDaAhHQLEu2UxmCiB1fZQoaAZHQJVlZwOvt+loB03oA2gIR0CxNKJiExqPdX2UKGgGR0CUmVjOs1baaAdN6ANoCEdAsTXWziS7oXV9lChoBkdAk8ZRxgiNbWgHTegDaAhHQLE2bm6oVEd1fZQoaAZHQJUP1OymhuhoB03oA2gIR0CxNp/GyX2NdX2UKGgGR0CTk6k6tDD1aAdN6ANoCEdAsT57t3OfNHV9lChoBkdAknPudsi0OWgHTegDaAhHQLE/to3Jgb91fZQoaAZHQJO7+0mdAgRoB03oA2gIR0CxQE7Gm1pkdX2UKGgGR0CSV165Gz8haAdN6ANoCEdAsUB/xYq5LHV9lChoBkdAlHX4eo1k2GgHTegDaAhHQLFGTOs1baB1fZQoaAZHQJIa6UTtb9toB03oA2gIR0CxR4XB1s+FdX2UKGgGR0CV0EwEQoTgaAdN6ANoCEdAsUggSGrS3XV9lChoBkdAkzo4vzvqkmgHTegDaAhHQLFIVwVCXyB1fZQoaAZHQJQTiISDh99oB03oA2gIR0CxUBrDye7MdX2UKGgGR0CVaDmrbQC0aAdN6ANoCEdAsVFWJgsshHV9lChoBkdAk2LzRIBikWgHTegDaAhHQLFR7jfek591fZQoaAZHQJTa3qoqCpZoB03oA2gIR0CxUh7k0aZQdX2UKGgGR0CUYJ9q1w5vaAdN6ANoCEdAsVfldonKGXV9lChoBkdAkoDSzXz19WgHTegDaAhHQLFZiO6NEPV1fZQoaAZHQJGv8DNhVlxoB03oA2gIR0CxWmSxVyWBdX2UKGgGR0CR5R/n4fwJaAdN6ANoCEdAsVqu7lJYknV9lChoBkdAkpw1Zs9B8mgHTegDaAhHQLFhvz19ORF1fZQoaAZHQJFiBW/8EV5oB03oA2gIR0CxYvcV+I/JdX2UKGgGR0CRS+nLJSzgaAdN6ANoCEdAsWOQGeMAFXV9lChoBkdAkd/zC+De02gHTegDaAhHQLFjwhg3Lmp1fZQoaAZHQIvSi1G9YfZoB03oA2gIR0Cxahq3iJfqdX2UKGgGR0CRUjYfGMn7aAdN6ANoCEdAsWv0/SpiqnV9lChoBkdAkBiZKWcBl2gHTegDaAhHQLFs5FCb+cZ1fZQoaAZHQJI1kDEFW4poB03oA2gIR0CxbTMS00FbdX2UKGgGR0CR4HRqGlANaAdN6ANoCEdAsXNKWBz3iHV9lChoBkdAlBKGlImPYGgHTegDaAhHQLF0go24usd1fZQoaAZHQJO/4Q5FPSFoB03oA2gIR0CxdRj4k/r0dX2UKGgGR0CUTTacZtN0aAdN6ANoCEdAsXVLCDVYp3V9lChoBkdAlX7q59Vmz2gHTegDaAhHQLF8fcSoOx11fZQoaAZHQJRrb2RJVbRoB03oA2gIR0Cxfk6KLsKLdX2UKGgGR0CQUaX+VC5VaAdN6ANoCEdAsX7pbiZOSHV9lChoBkdAg5NvqC6H02gHTegDaAhHQLF/GV/tpmF1fZQoaAZHQJMSdpRGc4JoB03oA2gIR0CxhOgP7N0OdX2UKGgGR0BwzQhX8wYcaAdN6ANoCEdAsYYbO6d1+3V9lChoBkdAlU79XYDkl2gHTegDaAhHQLGGsYEGJN11fZQoaAZHQJgnOxJNCZ5oB03oA2gIR0CxhuIAS39adX2UKGgGR0CUm8taIN3GaAdN6ANoCEdAsY648EFGG3V9lChoBkdAkva4VRDTjWgHTegDaAhHQLGP8kZaV2R1fZQoaAZHQJQDNCTlkpZoB03oA2gIR0CxkI6cd5prdX2UKGgGR0CCGHFaSs8xaAdN6ANoCEdAsZDAIomXxHV9lChoBkdAkvzLkbPyCmgHTegDaAhHQLGWcbjtG/h1fZQoaAZHQJXmyh37k4poB03oA2gIR0Cxl6hVlwtKdX2UKGgGR0CUv/Ho5ggHaAdN6ANoCEdAsZhQPZqVQnV9lChoBkdAlSY73wkPc2gHTegDaAhHQLGYmT3qRlp1fZQoaAZHQJXpkiY9gWtoB03oA2gIR0CxoEmi5/b1dX2UKGgGR0CPfWghbGFSaAdN6ANoCEdAsaGBRGc4HXV9lChoBkdAk09tpmEoOWgHTegDaAhHQLGiGf2bobJ1fZQoaAZHQJQVWwNb1RNoB03oA2gIR0Cxoksqe9SNdX2UKGgGR0CS0lFkxyn2aAdN6ANoCEdAsagEoF3Y+XV9lChoBkdAlRHBOk+HJ2gHTegDaAhHQLGpr9ovi991fZQoaAZHQJWHSpwS8J5oB03oA2gIR0CxqouFQEZBdX2UKGgGR0CWzphUR3/xaAdN6ANoCEdAsarURqXWv3V9lChoBkdAk9OkZrHlwWgHTegDaAhHQLGx0xlxwQ11fZQoaAZHQJE/jRZ2ZApoB03oA2gIR0Cxswuaa1CxdX2UKGgGR0CR5BRSgoPTaAdN6ANoCEdAsbOmHGjsU3V9lChoBkdAlg8Q62fCh2gHTegDaAhHQLGz1wbVBld1fZQoaAZHQJLcit8uzyBoB03oA2gIR0CxujttQ9A5dX2UKGgGR0CTmYBIFvAHaAdN6ANoCEdAsbwZ5LRKH3V9lChoBkdAk+l2xt52QmgHTegDaAhHQLG9ChPCVKR1fZQoaAZHQJO4OOvMbFVoB03oA2gIR0CxvVS3CsOodX2UKGgGR0CTJdu9eyAyaAdN6ANoCEdAscN0FpwjuHV9lChoBkdAkkvVd9lVcWgHTegDaAhHQLHEq8kUsWh1fZQoaAZHQJKjzcKw6hhoB03oA2gIR0CxxUebAk9mdX2UKGgGR0CS0FMVUModaAdN6ANoCEdAscV53s5XEXV9lChoBkdAkcwsUypJgGgHTegDaAhHQLHMznTy8SR1fZQoaAZHQJIlLa+N96VoB03oA2gIR0CxzoOFpPAPdX2UKGgGR0CRNW/I8yN5aAdN6ANoCEdAsc8bxUedTnV9lChoBkdAk3jBiw0O3GgHTegDaAhHQLHPTz7MxGl1fZQoaAZHQJGpjAN5MURoB03oA2gIR0Cx1RVQyhzvdX2UKGgGR0CQ59iN83MqaAdN6ANoCEdAsdZQbS7XhHV9lChoBkdAkbGJNbkfcWgHTegDaAhHQLHW7CCjDbd1fZQoaAZHQJAZw6ij+JhoB03oA2gIR0Cx1xuUt7KJdX2UKGgGR0CR506nR9gGaAdN6ANoCEdAsd79FhG6PXV9lChoBkdAlAKFvVEux2gHTegDaAhHQLHgMq6e5Fx1fZQoaAZHQJNINF7Uoa1oB03oA2gIR0Cx4MxtP558dX2UKGgGR0CSp8iMo+fRaAdN6ANoCEdAseD98twrD3VlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b8667c7c753c44b209ac6313d664de5c126be9196b6cf7a5724166fa2e47886
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55b7f6e3b162e679e709db084d584a1002af51b281fdcc0a9310979164d2e886
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff31a5889d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff31a588a60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff31a588af0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff31a588b80>", "_build": "<function ActorCriticPolicy._build at 0x7ff31a588c10>", "forward": "<function ActorCriticPolicy.forward at 0x7ff31a588ca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff31a588d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff31a588dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff31a588e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff31a588ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff31a588f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff31a590040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff31a58e600>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680099317631591625, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHW11r6XMCC+yA8CP+7F2jwC6yy/SoqHP3+5ZL/zGD29sHjlv86N2j7p1+i8B9y4PjWgXz8TaKw9kP08P29wFr2FUhe+IiaWvuaqvb68LKU9hUM+v/9kXr/7S+K+V/0TvxmJMz+2HJc+CGUIP1cigr8Lbjk/xHdWv8Aow70Wga4/lnCRv02/xj2DbVe/ctsBPxiApT/XXT67AzHWvtaUb770rKc+Cjo6v/18eb48xLg9ezxVPfhY2L8ILs6/POfwPW5ytz6DPyI/4qCZPp61mr8ZiTM/thyXPghlCD9XIoK/dRgWP79Vhr+X4NO+LF6NPx60TL+1mcO/HoOmvxeAHj7cJaY/iw3ZvsFNQ79yO68/4o0EP4/qr7/6J6A+KnPyvhIL4b/jWZA+3K9Tv8gzL0A0ToA+ID8wwPUQkT7h3iZAGYkzP7Yclz4IZQg/VyKCv0C4bz79vWW/Qcg0vhL6Hz3C9ta+nSZHPhoNpb94S8Q//uqlP/Xhs7xdMpe/6HXFPjmyij/owCw/FPliv+oGRT+BxeS/iODaP/0l8b/Ha90/hh5fPpg8871jjzg/v0/SPhmJMz+2HJc+CGUIPz3Nez+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAtVjI2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/U1cvQAAAACA4+u/AAAAAAPDy70AAAAAedXYPwAAAAAxbgs+AAAAAH2o4T8AAAAAYTfZvAAAAAASrwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfcCYtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgI6LtD0AAAAA9/rZvwAAAAA1kwC+AAAAAG5S/j8AAAAAMNLTPQAAAACYuvk/AAAAAAAvab0AAAAALuX/vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJXl2zQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBemQe8AAAAAMCI4L8AAAAAX3e6OwAAAADa7/Q/AAAAAMpwlr0AAAAAUVzhPwAAAACvCai9AAAAAOac3r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACRMP+1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAmR20PQAAAACRtuK/AAAAADFVkjoAAAAAMHL1PwAAAABoyf69AAAAAHTd3T8AAAAAT5wQvgAAAACsUgDAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJAOzgKnei2MAWyUTegDjAF0lEdAsQeEmD15B3V9lChoBkdAlwRhHPNVzmgHTegDaAhHQLEI8s8PnSx1fZQoaAZHQJSkPBbfP5ZoB03oA2gIR0CxCdAezUqhdX2UKGgGR0CTfSvWH1vmaAdN6ANoCEdAsQoVozvZy3V9lChoBkdAlLA6LKmsNmgHTegDaAhHQLERW39aUzN1fZQoaAZHQJMrizzErG1oB03oA2gIR0CxEpSncclxdX2UKGgGR0CStmRBNVR2aAdN6ANoCEdAsRMq1ndwenV9lChoBkdAkqF6vaDf32gHTegDaAhHQLETXAn2Iwd1fZQoaAZHQJcouLzf779oB03oA2gIR0CxGY2qLjxTdX2UKGgGR0CTEGl3hXKbaAdN6ANoCEdAsRtglF+d9XV9lChoBkdAktSAezUqhGgHTegDaAhHQLEcUU7CBPN1fZQoaAZHQJWvSinHeadoB03oA2gIR0CxHJxm5DqodX2UKGgGR0CTzajcEeQuaAdN6ANoCEdAsSLyABkqc3V9lChoBkdAlNwx51Ng0GgHTegDaAhHQLEkK4bjtHB1fZQoaAZHQJHdgnXumaZoB03oA2gIR0CxJMrOu7pWdX2UKGgGR0CVkwY51eSkaAdN6ANoCEdAsST9RUFSsXV9lChoBkdAlZ1QOz6acGgHTegDaAhHQLEsD1+RYA91fZQoaAZHQJeS7+fh/AloB03oA2gIR0CxLfKqXF98dX2UKGgGR0CUAGaq0dBCaAdN6ANoCEdAsS6ohQm/nHV9lChoBkdAlmmdJvo/zWgHTegDaAhHQLEu2UxmCiB1fZQoaAZHQJVlZwOvt+loB03oA2gIR0CxNKJiExqPdX2UKGgGR0CUmVjOs1baaAdN6ANoCEdAsTXWziS7oXV9lChoBkdAk8ZRxgiNbWgHTegDaAhHQLE2bm6oVEd1fZQoaAZHQJUP1OymhuhoB03oA2gIR0CxNp/GyX2NdX2UKGgGR0CTk6k6tDD1aAdN6ANoCEdAsT57t3OfNHV9lChoBkdAknPudsi0OWgHTegDaAhHQLE/to3Jgb91fZQoaAZHQJO7+0mdAgRoB03oA2gIR0CxQE7Gm1pkdX2UKGgGR0CSV165Gz8haAdN6ANoCEdAsUB/xYq5LHV9lChoBkdAlHX4eo1k2GgHTegDaAhHQLFGTOs1baB1fZQoaAZHQJIa6UTtb9toB03oA2gIR0CxR4XB1s+FdX2UKGgGR0CV0EwEQoTgaAdN6ANoCEdAsUggSGrS3XV9lChoBkdAkzo4vzvqkmgHTegDaAhHQLFIVwVCXyB1fZQoaAZHQJQTiISDh99oB03oA2gIR0CxUBrDye7MdX2UKGgGR0CVaDmrbQC0aAdN6ANoCEdAsVFWJgsshHV9lChoBkdAk2LzRIBikWgHTegDaAhHQLFR7jfek591fZQoaAZHQJTa3qoqCpZoB03oA2gIR0CxUh7k0aZQdX2UKGgGR0CUYJ9q1w5vaAdN6ANoCEdAsVfldonKGXV9lChoBkdAkoDSzXz19WgHTegDaAhHQLFZiO6NEPV1fZQoaAZHQJGv8DNhVlxoB03oA2gIR0CxWmSxVyWBdX2UKGgGR0CR5R/n4fwJaAdN6ANoCEdAsVqu7lJYknV9lChoBkdAkpw1Zs9B8mgHTegDaAhHQLFhvz19ORF1fZQoaAZHQJFiBW/8EV5oB03oA2gIR0CxYvcV+I/JdX2UKGgGR0CRS+nLJSzgaAdN6ANoCEdAsWOQGeMAFXV9lChoBkdAkd/zC+De02gHTegDaAhHQLFjwhg3Lmp1fZQoaAZHQIvSi1G9YfZoB03oA2gIR0Cxahq3iJfqdX2UKGgGR0CRUjYfGMn7aAdN6ANoCEdAsWv0/SpiqnV9lChoBkdAkBiZKWcBl2gHTegDaAhHQLFs5FCb+cZ1fZQoaAZHQJI1kDEFW4poB03oA2gIR0CxbTMS00FbdX2UKGgGR0CR4HRqGlANaAdN6ANoCEdAsXNKWBz3iHV9lChoBkdAlBKGlImPYGgHTegDaAhHQLF0go24usd1fZQoaAZHQJO/4Q5FPSFoB03oA2gIR0CxdRj4k/r0dX2UKGgGR0CUTTacZtN0aAdN6ANoCEdAsXVLCDVYp3V9lChoBkdAlX7q59Vmz2gHTegDaAhHQLF8fcSoOx11fZQoaAZHQJRrb2RJVbRoB03oA2gIR0Cxfk6KLsKLdX2UKGgGR0CQUaX+VC5VaAdN6ANoCEdAsX7pbiZOSHV9lChoBkdAg5NvqC6H02gHTegDaAhHQLF/GV/tpmF1fZQoaAZHQJMSdpRGc4JoB03oA2gIR0CxhOgP7N0OdX2UKGgGR0BwzQhX8wYcaAdN6ANoCEdAsYYbO6d1+3V9lChoBkdAlU79XYDkl2gHTegDaAhHQLGGsYEGJN11fZQoaAZHQJgnOxJNCZ5oB03oA2gIR0CxhuIAS39adX2UKGgGR0CUm8taIN3GaAdN6ANoCEdAsY648EFGG3V9lChoBkdAkva4VRDTjWgHTegDaAhHQLGP8kZaV2R1fZQoaAZHQJQDNCTlkpZoB03oA2gIR0CxkI6cd5prdX2UKGgGR0CCGHFaSs8xaAdN6ANoCEdAsZDAIomXxHV9lChoBkdAkvzLkbPyCmgHTegDaAhHQLGWcbjtG/h1fZQoaAZHQJXmyh37k4poB03oA2gIR0Cxl6hVlwtKdX2UKGgGR0CUv/Ho5ggHaAdN6ANoCEdAsZhQPZqVQnV9lChoBkdAlSY73wkPc2gHTegDaAhHQLGYmT3qRlp1fZQoaAZHQJXpkiY9gWtoB03oA2gIR0CxoEmi5/b1dX2UKGgGR0CPfWghbGFSaAdN6ANoCEdAsaGBRGc4HXV9lChoBkdAk09tpmEoOWgHTegDaAhHQLGiGf2bobJ1fZQoaAZHQJQVWwNb1RNoB03oA2gIR0Cxoksqe9SNdX2UKGgGR0CS0lFkxyn2aAdN6ANoCEdAsagEoF3Y+XV9lChoBkdAlRHBOk+HJ2gHTegDaAhHQLGpr9ovi991fZQoaAZHQJWHSpwS8J5oB03oA2gIR0CxqouFQEZBdX2UKGgGR0CWzphUR3/xaAdN6ANoCEdAsarURqXWv3V9lChoBkdAk9OkZrHlwWgHTegDaAhHQLGx0xlxwQ11fZQoaAZHQJE/jRZ2ZApoB03oA2gIR0Cxswuaa1CxdX2UKGgGR0CR5BRSgoPTaAdN6ANoCEdAsbOmHGjsU3V9lChoBkdAlg8Q62fCh2gHTegDaAhHQLGz1wbVBld1fZQoaAZHQJLcit8uzyBoB03oA2gIR0CxujttQ9A5dX2UKGgGR0CTmYBIFvAHaAdN6ANoCEdAsbwZ5LRKH3V9lChoBkdAk+l2xt52QmgHTegDaAhHQLG9ChPCVKR1fZQoaAZHQJO4OOvMbFVoB03oA2gIR0CxvVS3CsOodX2UKGgGR0CTJdu9eyAyaAdN6ANoCEdAscN0FpwjuHV9lChoBkdAkkvVd9lVcWgHTegDaAhHQLHEq8kUsWh1fZQoaAZHQJKjzcKw6hhoB03oA2gIR0CxxUebAk9mdX2UKGgGR0CS0FMVUModaAdN6ANoCEdAscV53s5XEXV9lChoBkdAkcwsUypJgGgHTegDaAhHQLHMznTy8SR1fZQoaAZHQJIlLa+N96VoB03oA2gIR0CxzoOFpPAPdX2UKGgGR0CRNW/I8yN5aAdN6ANoCEdAsc8bxUedTnV9lChoBkdAk3jBiw0O3GgHTegDaAhHQLHPTz7MxGl1fZQoaAZHQJGpjAN5MURoB03oA2gIR0Cx1RVQyhzvdX2UKGgGR0CQ59iN83MqaAdN6ANoCEdAsdZQbS7XhHV9lChoBkdAkbGJNbkfcWgHTegDaAhHQLHW7CCjDbd1fZQoaAZHQJAZw6ij+JhoB03oA2gIR0Cx1xuUt7KJdX2UKGgGR0CR506nR9gGaAdN6ANoCEdAsd79FhG6PXV9lChoBkdAlAKFvVEux2gHTegDaAhHQLHgMq6e5Fx1fZQoaAZHQJNINF7Uoa1oB03oA2gIR0Cx4MxtP558dX2UKGgGR0CSp8iMo+fRaAdN6ANoCEdAseD98twrD3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bada0810bc1524c1a594d85eb6aa28d45eea4159efcfe91bb51af610211eca2d
3
+ size 1062904
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1358.8019272849604, "std_reward": 43.35981039620679, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-29T15:37:31.508531"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76298d1d4bbb1fba7343381740fe052d2fa64fdf95a6da3fcd78b454c0ace223
3
+ size 2136