ghassenhannachi commited on
Commit
83ed4f5
·
1 Parent(s): cf4c24f

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -7.28 +/- 2.41
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ca2d40971319059c64d083a4a8f50ffd1bddf30c90d671f96d8c933bac465d3
3
+ size 108016
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff31a590160>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7ff31a58e7c0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1680104584187273434,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAZRXcPvbutjzTVvA+ZRXcPvbutjzTVvA+ZRXcPvbutjzTVvA+ZRXcPvbutjzTVvA+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAArCEGPq11sL5bB6E/6m+Vv6r6ST+quMi/ngoUP3vkCT+MCWE/L9uGvsu9QT+tTSm/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABlFdw+9u62PNNW8D7MU6q7hvGjO0AelLtlFdw+9u62PNNW8D7MU6q7hvGjO0AelLtlFdw+9u62PNNW8D7MU6q7hvGjO0AelLtlFdw+9u62PNNW8D7MU6q7hvGjO0AelLuUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.42985073 0.02233074 0.46941242]\n [0.42985073 0.02233074 0.46941242]\n [0.42985073 0.02233074 0.46941242]\n [0.42985073 0.02233074 0.46941242]]",
60
+ "desired_goal": "[[ 0.13098782 -0.3446478 1.258037 ]\n [-1.1674778 0.7889811 -1.5681355 ]\n [ 0.578287 0.5386426 0.8790519 ]\n [-0.263391 0.75680226 -0.6613415 ]]",
61
+ "observation": "[[ 0.42985073 0.02233074 0.46941242 -0.00519798 0.00500316 -0.00452021]\n [ 0.42985073 0.02233074 0.46941242 -0.00519798 0.00500316 -0.00452021]\n [ 0.42985073 0.02233074 0.46941242 -0.00519798 0.00500316 -0.00452021]\n [ 0.42985073 0.02233074 0.46941242 -0.00519798 0.00500316 -0.00452021]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAjwOVPcuY4zwsdmA9xnf+PS9Swz2hAQg+oI8+PXUbJL1RCSA9WTR8PDuovb05md89lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.07276069 0.02778282 0.0548002 ]\n [ 0.12425189 0.0953716 0.13281871]\n [ 0.04652369 -0.04006525 0.03907138]\n [ 0.01539334 -0.09260603 0.10917897]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6dZrelAgLMCUhpRSlIwBbJRLMowBdJRHQKyTij9GZu11fZQoaAZoCWgPQwjXw5eJIvQUwJSGlFKUaBVLMmgWR0Csk0BK+SKWdX2UKGgGaAloD0MII/jfSnaMFMCUhpRSlGgVSzJoFkdArJL2MGX5WXV9lChoBmgJaA9DCCKq8Gd4gx3AlIaUUpRoFUsyaBZHQKySqh6By0d1fZQoaAZoCWgPQwhRiIBDqMITwJSGlFKUaBVLMmgWR0CslN4dQwbmdX2UKGgGaAloD0MI9katMH1/EsCUhpRSlGgVSzJoFkdArJSTaPCEYnV9lChoBmgJaA9DCOPg0jHnGSbAlIaUUpRoFUsyaBZHQKyUSHaews51fZQoaAZoCWgPQwjcuwZ96e0QwJSGlFKUaBVLMmgWR0Csk/waJhvzdX2UKGgGaAloD0MIhbGFIAfFIcCUhpRSlGgVSzJoFkdArJaFOuaF23V9lChoBmgJaA9DCMQFoFG63CDAlIaUUpRoFUsyaBZHQKyWPgogFHJ1fZQoaAZoCWgPQwgVqwZhbhcdwJSGlFKUaBVLMmgWR0CslfXgk1MudX2UKGgGaAloD0MIixpMw/AREcCUhpRSlGgVSzJoFkdArJWqNsFdLXV9lChoBmgJaA9DCA2K5gEsSi/AlIaUUpRoFUsyaBZHQKyY4F8G9pR1fZQoaAZoCWgPQwgIAmTo2PkhwJSGlFKUaBVLMmgWR0CsmJcvEjxDdX2UKGgGaAloD0MIh8Woa+0dC8CUhpRSlGgVSzJoFkdArJhOFev6j3V9lChoBmgJaA9DCDP5ZpsbkxfAlIaUUpRoFUsyaBZHQKyYAmygPEt1fZQoaAZoCWgPQwgA/5QqUYYTwJSGlFKUaBVLMmgWR0Csm0hqCYkWdX2UKGgGaAloD0MIC7YRT3azIsCUhpRSlGgVSzJoFkdArJr/XVbzLHV9lChoBmgJaA9DCORqZFdaxhrAlIaUUpRoFUsyaBZHQKyataq0dBB1fZQoaAZoCWgPQwgomZzaGQYHwJSGlFKUaBVLMmgWR0CsmmtWEK3NdX2UKGgGaAloD0MIP1jGhm4WIsCUhpRSlGgVSzJoFkdArJ3AJZ4fOnV9lChoBmgJaA9DCMLdWbvtEhTAlIaUUpRoFUsyaBZHQKyddxIatLd1fZQoaAZoCWgPQwgf8wGBzqQVwJSGlFKUaBVLMmgWR0CsnS0v4/NadX2UKGgGaAloD0MIjo8WZwzjGsCUhpRSlGgVSzJoFkdArJzjZFocrHV9lChoBmgJaA9DCD7NyYtM2CPAlIaUUpRoFUsyaBZHQKygVGPPszF1fZQoaAZoCWgPQwiSdM3km20KwJSGlFKUaBVLMmgWR0CsoAqDkELZdX2UKGgGaAloD0MIpkQSvYyyJcCUhpRSlGgVSzJoFkdArJ/Aa1kUbnV9lChoBmgJaA9DCExuFFlriBrAlIaUUpRoFUsyaBZHQKyfdum78Nx1fZQoaAZoCWgPQwiJCP8iaPwiwJSGlFKUaBVLMmgWR0CsoeMXJo0zdX2UKGgGaAloD0MIBvGBHf8FHMCUhpRSlGgVSzJoFkdArKGYtFrmAHV9lChoBmgJaA9DCM6o+Sr5uB7AlIaUUpRoFUsyaBZHQKyhTdOZb6h1fZQoaAZoCWgPQwgw1cxaCrgYwJSGlFKUaBVLMmgWR0CsoQFMqSX/dX2UKGgGaAloD0MIVp3VAnvcH8CUhpRSlGgVSzJoFkdArKOAsoUi6nV9lChoBmgJaA9DCEzGMZI9AgvAlIaUUpRoFUsyaBZHQKyjNsJIDo11fZQoaAZoCWgPQwgGn+bkRbYgwJSGlFKUaBVLMmgWR0Csout/4IrwdX2UKGgGaAloD0MITFKZYg6yEcCUhpRSlGgVSzJoFkdArKKe8oQWe3V9lChoBmgJaA9DCH8xW7IqGiDAlIaUUpRoFUsyaBZHQKylKDV6NVB1fZQoaAZoCWgPQwjPSe8bXxMwwJSGlFKUaBVLMmgWR0CspN3rUsnRdX2UKGgGaAloD0MIvr9Be/UZIMCUhpRSlGgVSzJoFkdArKSTB42S+3V9lChoBmgJaA9DCDnThO0ngwDAlIaUUpRoFUsyaBZHQKykRxIatLd1fZQoaAZoCWgPQwhrZFdaRnoRwJSGlFKUaBVLMmgWR0CspoWIwdsBdX2UKGgGaAloD0MI+WUwRiRiIMCUhpRSlGgVSzJoFkdArKY7IxQBP3V9lChoBmgJaA9DCAMjL2tiIRXAlIaUUpRoFUsyaBZHQKyl7/HYHxB1fZQoaAZoCWgPQwhD44kgzgMdwJSGlFKUaBVLMmgWR0CspaN/WlMzdX2UKGgGaAloD0MIGCe+2lGcG8CUhpRSlGgVSzJoFkdArKflFMIu5HV9lChoBmgJaA9DCBA7U+i8thbAlIaUUpRoFUsyaBZHQKynmnG82751fZQoaAZoCWgPQwgLR5BKsSMcwJSGlFKUaBVLMmgWR0Csp0+4b0e2dX2UKGgGaAloD0MIsmMjEK8bEcCUhpRSlGgVSzJoFkdArKcEdmxt53V9lChoBmgJaA9DCP5F0JhJJBnAlIaUUpRoFUsyaBZHQKypkMefZmJ1fZQoaAZoCWgPQwiW6gJeZugdwJSGlFKUaBVLMmgWR0CsqUa7dznzdX2UKGgGaAloD0MI8S+CxkzyJsCUhpRSlGgVSzJoFkdArKj74k/r0XV9lChoBmgJaA9DCPGD86ljFSHAlIaUUpRoFUsyaBZHQKyosDbrTph1fZQoaAZoCWgPQwhaKQRyiUMZwJSGlFKUaBVLMmgWR0Csqwi6xxDLdX2UKGgGaAloD0MIzmxX6IMFIMCUhpRSlGgVSzJoFkdArKq+SlnAZnV9lChoBmgJaA9DCDMxXYjV3xTAlIaUUpRoFUsyaBZHQKyqdAwfyPN1fZQoaAZoCWgPQwj/WIgOgVMXwJSGlFKUaBVLMmgWR0CsqieY+jdpdX2UKGgGaAloD0MIyNEcWflNJMCUhpRSlGgVSzJoFkdArKxXY4ACGXV9lChoBmgJaA9DCBtHrMWnYBXAlIaUUpRoFUsyaBZHQKysDMotthx1fZQoaAZoCWgPQwgAAtaqXZMewJSGlFKUaBVLMmgWR0Csq8HFYMfBdX2UKGgGaAloD0MISb2nctqzHMCUhpRSlGgVSzJoFkdArKt1a4c3l3V9lChoBmgJaA9DCJPDJ51IABrAlIaUUpRoFUsyaBZHQKyt0P3BYV91fZQoaAZoCWgPQwiq7pHNVRMdwJSGlFKUaBVLMmgWR0CsrYbi6xxDdX2UKGgGaAloD0MI7FBNSdYxGMCUhpRSlGgVSzJoFkdArK07/bTMJXV9lChoBmgJaA9DCLDJGvUQjRvAlIaUUpRoFUsyaBZHQKys76LwWnF1fZQoaAZoCWgPQwi1FmahnTMmwJSGlFKUaBVLMmgWR0Csrw2PcSGrdX2UKGgGaAloD0MIEYqtoGkpJMCUhpRSlGgVSzJoFkdArK7DJ4jbBXV9lChoBmgJaA9DCE59IHnnsBfAlIaUUpRoFUsyaBZHQKyud+GXXy11fZQoaAZoCWgPQwgpB7MJMEwWwJSGlFKUaBVLMmgWR0CsriupjtojdX2UKGgGaAloD0MIt5bJcDxXLMCUhpRSlGgVSzJoFkdArLB3XGwRoXV9lChoBmgJaA9DCKQzMPKyphfAlIaUUpRoFUsyaBZHQKywLIqbz9V1fZQoaAZoCWgPQwgDtRg8TJsawJSGlFKUaBVLMmgWR0Csr+HhKlHjdX2UKGgGaAloD0MIuOnPfqREMMCUhpRSlGgVSzJoFkdArK+Vrbg0j3V9lChoBmgJaA9DCK71RUJbPhfAlIaUUpRoFUsyaBZHQKyxvGEwnIB1fZQoaAZoCWgPQwgqHaz/c5gkwJSGlFKUaBVLMmgWR0CssXGz8gp0dX2UKGgGaAloD0MINA71u7B9KMCUhpRSlGgVSzJoFkdArLEmetjkMnV9lChoBmgJaA9DCErx8QnZCRzAlIaUUpRoFUsyaBZHQKyw2gh8pkR1fZQoaAZoCWgPQwiimLwBZp4SwJSGlFKUaBVLMmgWR0Cssw1h9b5edX2UKGgGaAloD0MIy4P0FDn0G8CUhpRSlGgVSzJoFkdArLLCuZCv5nV9lChoBmgJaA9DCB2PGaiM/xfAlIaUUpRoFUsyaBZHQKyyd2/SH/N1fZQoaAZoCWgPQwi5quy7IhgWwJSGlFKUaBVLMmgWR0CssitvwVj7dX2UKGgGaAloD0MIb6DAO/nUF8CUhpRSlGgVSzJoFkdArLRXWe6I33V9lChoBmgJaA9DCJXSM73EaCXAlIaUUpRoFUsyaBZHQKy0DNJOFg51fZQoaAZoCWgPQwiLql/pfCgXwJSGlFKUaBVLMmgWR0Css8GTC+DfdX2UKGgGaAloD0MIzsMJTKdNJcCUhpRSlGgVSzJoFkdArLN1N5+pfnV9lChoBmgJaA9DCEmcFVETjRHAlIaUUpRoFUsyaBZHQKy20cpb2UV1fZQoaAZoCWgPQwjP+L64VFUZwJSGlFKUaBVLMmgWR0CstonNX5nEdX2UKGgGaAloD0MIJ6Wg20sKGsCUhpRSlGgVSzJoFkdArLY/cBU70XV9lChoBmgJaA9DCGsMOiF0oBrAlIaUUpRoFUsyaBZHQKy19O0svqV1fZQoaAZoCWgPQwhXfEPhszUYwJSGlFKUaBVLMmgWR0CsuP0FB6a9dX2UKGgGaAloD0MIhLcHISCvJMCUhpRSlGgVSzJoFkdArLiz0e2d/nV9lChoBmgJaA9DCH6K48CrlSnAlIaUUpRoFUsyaBZHQKy4ahgVoHt1fZQoaAZoCWgPQwg/yR02kcklwJSGlFKUaBVLMmgWR0CsuB6w2VFAdX2UKGgGaAloD0MIzeUGQx0GGcCUhpRSlGgVSzJoFkdArLtpaRp1zXV9lChoBmgJaA9DCBzvjozVphXAlIaUUpRoFUsyaBZHQKy7IU3XI2h1fZQoaAZoCWgPQwhcHJWbqJUVwJSGlFKUaBVLMmgWR0CsutcL8aXKdX2UKGgGaAloD0MIbvse9deTKMCUhpRSlGgVSzJoFkdArLqML0BfbHV9lChoBmgJaA9DCKSIDKt48xfAlIaUUpRoFUsyaBZHQKy9lQD3dsV1fZQoaAZoCWgPQwgcCwqDMl0UwJSGlFKUaBVLMmgWR0CsvUudXko4dX2UKGgGaAloD0MIzhySWigZIMCUhpRSlGgVSzJoFkdArL0BaouPFXV9lChoBmgJaA9DCNsZprbUQSTAlIaUUpRoFUsyaBZHQKy8tjMmnfl1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6ac63009b382d01145103b92b900e6d8549272fea4182fb6668732fe90e7200
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54613591e2893c4c56314882f07c54215d7dd3759933bf231c0ca27d3d148211
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff31a590160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff31a58e7c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680104584187273434, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAZRXcPvbutjzTVvA+ZRXcPvbutjzTVvA+ZRXcPvbutjzTVvA+ZRXcPvbutjzTVvA+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAArCEGPq11sL5bB6E/6m+Vv6r6ST+quMi/ngoUP3vkCT+MCWE/L9uGvsu9QT+tTSm/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABlFdw+9u62PNNW8D7MU6q7hvGjO0AelLtlFdw+9u62PNNW8D7MU6q7hvGjO0AelLtlFdw+9u62PNNW8D7MU6q7hvGjO0AelLtlFdw+9u62PNNW8D7MU6q7hvGjO0AelLuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.42985073 0.02233074 0.46941242]\n [0.42985073 0.02233074 0.46941242]\n [0.42985073 0.02233074 0.46941242]\n [0.42985073 0.02233074 0.46941242]]", "desired_goal": "[[ 0.13098782 -0.3446478 1.258037 ]\n [-1.1674778 0.7889811 -1.5681355 ]\n [ 0.578287 0.5386426 0.8790519 ]\n [-0.263391 0.75680226 -0.6613415 ]]", "observation": "[[ 0.42985073 0.02233074 0.46941242 -0.00519798 0.00500316 -0.00452021]\n [ 0.42985073 0.02233074 0.46941242 -0.00519798 0.00500316 -0.00452021]\n [ 0.42985073 0.02233074 0.46941242 -0.00519798 0.00500316 -0.00452021]\n [ 0.42985073 0.02233074 0.46941242 -0.00519798 0.00500316 -0.00452021]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAjwOVPcuY4zwsdmA9xnf+PS9Swz2hAQg+oI8+PXUbJL1RCSA9WTR8PDuovb05md89lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.07276069 0.02778282 0.0548002 ]\n [ 0.12425189 0.0953716 0.13281871]\n [ 0.04652369 -0.04006525 0.03907138]\n [ 0.01539334 -0.09260603 0.10917897]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6dZrelAgLMCUhpRSlIwBbJRLMowBdJRHQKyTij9GZu11fZQoaAZoCWgPQwjXw5eJIvQUwJSGlFKUaBVLMmgWR0Csk0BK+SKWdX2UKGgGaAloD0MII/jfSnaMFMCUhpRSlGgVSzJoFkdArJL2MGX5WXV9lChoBmgJaA9DCCKq8Gd4gx3AlIaUUpRoFUsyaBZHQKySqh6By0d1fZQoaAZoCWgPQwhRiIBDqMITwJSGlFKUaBVLMmgWR0CslN4dQwbmdX2UKGgGaAloD0MI9katMH1/EsCUhpRSlGgVSzJoFkdArJSTaPCEYnV9lChoBmgJaA9DCOPg0jHnGSbAlIaUUpRoFUsyaBZHQKyUSHaews51fZQoaAZoCWgPQwjcuwZ96e0QwJSGlFKUaBVLMmgWR0Csk/waJhvzdX2UKGgGaAloD0MIhbGFIAfFIcCUhpRSlGgVSzJoFkdArJaFOuaF23V9lChoBmgJaA9DCMQFoFG63CDAlIaUUpRoFUsyaBZHQKyWPgogFHJ1fZQoaAZoCWgPQwgVqwZhbhcdwJSGlFKUaBVLMmgWR0CslfXgk1MudX2UKGgGaAloD0MIixpMw/AREcCUhpRSlGgVSzJoFkdArJWqNsFdLXV9lChoBmgJaA9DCA2K5gEsSi/AlIaUUpRoFUsyaBZHQKyY4F8G9pR1fZQoaAZoCWgPQwgIAmTo2PkhwJSGlFKUaBVLMmgWR0CsmJcvEjxDdX2UKGgGaAloD0MIh8Woa+0dC8CUhpRSlGgVSzJoFkdArJhOFev6j3V9lChoBmgJaA9DCDP5ZpsbkxfAlIaUUpRoFUsyaBZHQKyYAmygPEt1fZQoaAZoCWgPQwgA/5QqUYYTwJSGlFKUaBVLMmgWR0Csm0hqCYkWdX2UKGgGaAloD0MIC7YRT3azIsCUhpRSlGgVSzJoFkdArJr/XVbzLHV9lChoBmgJaA9DCORqZFdaxhrAlIaUUpRoFUsyaBZHQKyataq0dBB1fZQoaAZoCWgPQwgomZzaGQYHwJSGlFKUaBVLMmgWR0CsmmtWEK3NdX2UKGgGaAloD0MIP1jGhm4WIsCUhpRSlGgVSzJoFkdArJ3AJZ4fOnV9lChoBmgJaA9DCMLdWbvtEhTAlIaUUpRoFUsyaBZHQKyddxIatLd1fZQoaAZoCWgPQwgf8wGBzqQVwJSGlFKUaBVLMmgWR0CsnS0v4/NadX2UKGgGaAloD0MIjo8WZwzjGsCUhpRSlGgVSzJoFkdArJzjZFocrHV9lChoBmgJaA9DCD7NyYtM2CPAlIaUUpRoFUsyaBZHQKygVGPPszF1fZQoaAZoCWgPQwiSdM3km20KwJSGlFKUaBVLMmgWR0CsoAqDkELZdX2UKGgGaAloD0MIpkQSvYyyJcCUhpRSlGgVSzJoFkdArJ/Aa1kUbnV9lChoBmgJaA9DCExuFFlriBrAlIaUUpRoFUsyaBZHQKyfdum78Nx1fZQoaAZoCWgPQwiJCP8iaPwiwJSGlFKUaBVLMmgWR0CsoeMXJo0zdX2UKGgGaAloD0MIBvGBHf8FHMCUhpRSlGgVSzJoFkdArKGYtFrmAHV9lChoBmgJaA9DCM6o+Sr5uB7AlIaUUpRoFUsyaBZHQKyhTdOZb6h1fZQoaAZoCWgPQwgw1cxaCrgYwJSGlFKUaBVLMmgWR0CsoQFMqSX/dX2UKGgGaAloD0MIVp3VAnvcH8CUhpRSlGgVSzJoFkdArKOAsoUi6nV9lChoBmgJaA9DCEzGMZI9AgvAlIaUUpRoFUsyaBZHQKyjNsJIDo11fZQoaAZoCWgPQwgGn+bkRbYgwJSGlFKUaBVLMmgWR0Csout/4IrwdX2UKGgGaAloD0MITFKZYg6yEcCUhpRSlGgVSzJoFkdArKKe8oQWe3V9lChoBmgJaA9DCH8xW7IqGiDAlIaUUpRoFUsyaBZHQKylKDV6NVB1fZQoaAZoCWgPQwjPSe8bXxMwwJSGlFKUaBVLMmgWR0CspN3rUsnRdX2UKGgGaAloD0MIvr9Be/UZIMCUhpRSlGgVSzJoFkdArKSTB42S+3V9lChoBmgJaA9DCDnThO0ngwDAlIaUUpRoFUsyaBZHQKykRxIatLd1fZQoaAZoCWgPQwhrZFdaRnoRwJSGlFKUaBVLMmgWR0CspoWIwdsBdX2UKGgGaAloD0MI+WUwRiRiIMCUhpRSlGgVSzJoFkdArKY7IxQBP3V9lChoBmgJaA9DCAMjL2tiIRXAlIaUUpRoFUsyaBZHQKyl7/HYHxB1fZQoaAZoCWgPQwhD44kgzgMdwJSGlFKUaBVLMmgWR0CspaN/WlMzdX2UKGgGaAloD0MIGCe+2lGcG8CUhpRSlGgVSzJoFkdArKflFMIu5HV9lChoBmgJaA9DCBA7U+i8thbAlIaUUpRoFUsyaBZHQKynmnG82751fZQoaAZoCWgPQwgLR5BKsSMcwJSGlFKUaBVLMmgWR0Csp0+4b0e2dX2UKGgGaAloD0MIsmMjEK8bEcCUhpRSlGgVSzJoFkdArKcEdmxt53V9lChoBmgJaA9DCP5F0JhJJBnAlIaUUpRoFUsyaBZHQKypkMefZmJ1fZQoaAZoCWgPQwiW6gJeZugdwJSGlFKUaBVLMmgWR0CsqUa7dznzdX2UKGgGaAloD0MI8S+CxkzyJsCUhpRSlGgVSzJoFkdArKj74k/r0XV9lChoBmgJaA9DCPGD86ljFSHAlIaUUpRoFUsyaBZHQKyosDbrTph1fZQoaAZoCWgPQwhaKQRyiUMZwJSGlFKUaBVLMmgWR0Csqwi6xxDLdX2UKGgGaAloD0MIzmxX6IMFIMCUhpRSlGgVSzJoFkdArKq+SlnAZnV9lChoBmgJaA9DCDMxXYjV3xTAlIaUUpRoFUsyaBZHQKyqdAwfyPN1fZQoaAZoCWgPQwj/WIgOgVMXwJSGlFKUaBVLMmgWR0CsqieY+jdpdX2UKGgGaAloD0MIyNEcWflNJMCUhpRSlGgVSzJoFkdArKxXY4ACGXV9lChoBmgJaA9DCBtHrMWnYBXAlIaUUpRoFUsyaBZHQKysDMotthx1fZQoaAZoCWgPQwgAAtaqXZMewJSGlFKUaBVLMmgWR0Csq8HFYMfBdX2UKGgGaAloD0MISb2nctqzHMCUhpRSlGgVSzJoFkdArKt1a4c3l3V9lChoBmgJaA9DCJPDJ51IABrAlIaUUpRoFUsyaBZHQKyt0P3BYV91fZQoaAZoCWgPQwiq7pHNVRMdwJSGlFKUaBVLMmgWR0CsrYbi6xxDdX2UKGgGaAloD0MI7FBNSdYxGMCUhpRSlGgVSzJoFkdArK07/bTMJXV9lChoBmgJaA9DCLDJGvUQjRvAlIaUUpRoFUsyaBZHQKys76LwWnF1fZQoaAZoCWgPQwi1FmahnTMmwJSGlFKUaBVLMmgWR0Csrw2PcSGrdX2UKGgGaAloD0MIEYqtoGkpJMCUhpRSlGgVSzJoFkdArK7DJ4jbBXV9lChoBmgJaA9DCE59IHnnsBfAlIaUUpRoFUsyaBZHQKyud+GXXy11fZQoaAZoCWgPQwgpB7MJMEwWwJSGlFKUaBVLMmgWR0CsriupjtojdX2UKGgGaAloD0MIt5bJcDxXLMCUhpRSlGgVSzJoFkdArLB3XGwRoXV9lChoBmgJaA9DCKQzMPKyphfAlIaUUpRoFUsyaBZHQKywLIqbz9V1fZQoaAZoCWgPQwgDtRg8TJsawJSGlFKUaBVLMmgWR0Csr+HhKlHjdX2UKGgGaAloD0MIuOnPfqREMMCUhpRSlGgVSzJoFkdArK+Vrbg0j3V9lChoBmgJaA9DCK71RUJbPhfAlIaUUpRoFUsyaBZHQKyxvGEwnIB1fZQoaAZoCWgPQwgqHaz/c5gkwJSGlFKUaBVLMmgWR0CssXGz8gp0dX2UKGgGaAloD0MINA71u7B9KMCUhpRSlGgVSzJoFkdArLEmetjkMnV9lChoBmgJaA9DCErx8QnZCRzAlIaUUpRoFUsyaBZHQKyw2gh8pkR1fZQoaAZoCWgPQwiimLwBZp4SwJSGlFKUaBVLMmgWR0Cssw1h9b5edX2UKGgGaAloD0MIy4P0FDn0G8CUhpRSlGgVSzJoFkdArLLCuZCv5nV9lChoBmgJaA9DCB2PGaiM/xfAlIaUUpRoFUsyaBZHQKyyd2/SH/N1fZQoaAZoCWgPQwi5quy7IhgWwJSGlFKUaBVLMmgWR0CssitvwVj7dX2UKGgGaAloD0MIb6DAO/nUF8CUhpRSlGgVSzJoFkdArLRXWe6I33V9lChoBmgJaA9DCJXSM73EaCXAlIaUUpRoFUsyaBZHQKy0DNJOFg51fZQoaAZoCWgPQwiLql/pfCgXwJSGlFKUaBVLMmgWR0Css8GTC+DfdX2UKGgGaAloD0MIzsMJTKdNJcCUhpRSlGgVSzJoFkdArLN1N5+pfnV9lChoBmgJaA9DCEmcFVETjRHAlIaUUpRoFUsyaBZHQKy20cpb2UV1fZQoaAZoCWgPQwjP+L64VFUZwJSGlFKUaBVLMmgWR0CstonNX5nEdX2UKGgGaAloD0MIJ6Wg20sKGsCUhpRSlGgVSzJoFkdArLY/cBU70XV9lChoBmgJaA9DCGsMOiF0oBrAlIaUUpRoFUsyaBZHQKy19O0svqV1fZQoaAZoCWgPQwhXfEPhszUYwJSGlFKUaBVLMmgWR0CsuP0FB6a9dX2UKGgGaAloD0MIhLcHISCvJMCUhpRSlGgVSzJoFkdArLiz0e2d/nV9lChoBmgJaA9DCH6K48CrlSnAlIaUUpRoFUsyaBZHQKy4ahgVoHt1fZQoaAZoCWgPQwg/yR02kcklwJSGlFKUaBVLMmgWR0CsuB6w2VFAdX2UKGgGaAloD0MIzeUGQx0GGcCUhpRSlGgVSzJoFkdArLtpaRp1zXV9lChoBmgJaA9DCBzvjozVphXAlIaUUpRoFUsyaBZHQKy7IU3XI2h1fZQoaAZoCWgPQwhcHJWbqJUVwJSGlFKUaBVLMmgWR0CsutcL8aXKdX2UKGgGaAloD0MIbvse9deTKMCUhpRSlGgVSzJoFkdArLqML0BfbHV9lChoBmgJaA9DCKSIDKt48xfAlIaUUpRoFUsyaBZHQKy9lQD3dsV1fZQoaAZoCWgPQwgcCwqDMl0UwJSGlFKUaBVLMmgWR0CsvUudXko4dX2UKGgGaAloD0MIzhySWigZIMCUhpRSlGgVSzJoFkdArL0BaouPFXV9lChoBmgJaA9DCNsZprbUQSTAlIaUUpRoFUsyaBZHQKy8tjMmnfl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (883 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -7.283787636831403, "std_reward": 2.4137737745549446, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-29T16:49:26.865848"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f9b94e0f73656b4a27878eb357b9215c8092d8addad0df9fcc0ec1391cb9085
3
+ size 3056