ghoskno commited on
Commit
30da159
1 Parent(s): e009f0e

update: update model card

Browse files
Files changed (1) hide show
  1. README.md +48 -1
README.md CHANGED
@@ -10,4 +10,51 @@ tags:
10
  - jax-diffusers-event
11
  ---
12
 
13
- This is a Torch ControlNet model converted from Flax model, trained by Flax diffusers framework on 'laion-art' dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  - jax-diffusers-event
11
  ---
12
 
13
+ # Color-Canny CantrolNet
14
+
15
+ These are controlnet checkpoints trained on runwayml/stable-diffusion-v1-5, using fused color and canny edge as conditioning.
16
+
17
+ You can find some example images in the following.
18
+
19
+ **prompt**: a concept art of by Makoto Shinkai, a girl is standing in the middle of the sea
20
+
21
+ **negative prompt**: text, bad anatomy, blurry, (low quality, blurry)
22
+ ![images_1)](./1.png)
23
+
24
+ **prompt**: a concept art of by Makoto Shinkai, a girl is standing in the middle of the sea
25
+
26
+ **negative prompt**: text, bad anatomy, blurry, (low quality, blurry)
27
+ ![images_2)](./2.png)
28
+
29
+ **prompt**: a concept art of by Makoto Shinkai, a girl is standing in the middle of the grass
30
+
31
+ **negative prompt**: text, bad anatomy, blurry, (low quality, blurry)
32
+ ![images_3)](./3.png)
33
+
34
+
35
+ ## Limitations and Bias
36
+
37
+ - No strict control by input color
38
+ - Sometimes generate image with confusion When color description in prompt
39
+
40
+ ## Training
41
+
42
+ **Dataset**
43
+ We train this model on [laion-art](https://huggingface.co/datasets/laion/laion-art) dataset with 2.6m images, the processed dataset can be found in [ghoskno/laion-art-en-colorcanny](https://huggingface.co/datasets/ghoskno/laion-art-en-colorcanny).
44
+
45
+
46
+ **Training Details**
47
+
48
+ - **Hardware**: Google Cloud TPUv4-8 VM
49
+
50
+ - **Optimizer**: AdamW
51
+
52
+ - **Train Batch Size**: 4 x 4 = 16
53
+
54
+ - **Learning rate**: 0.00001 constant
55
+
56
+ - **Gradient Accumulation Steps**: 4
57
+
58
+ - **Resolution**: 512
59
+
60
+ - **Train Steps**: 36000