--- license: apache-2.0 datasets: - laion/laion-art language: - en library_name: diffusers pipeline_tag: text-to-image tags: - jax-diffusers-event --- # Color-Canny CantrolNet These are ControlNet checkpoints trained on runwayml/stable-diffusion-v1-5, using fused color and canny edge as conditioning. You can find some example images in the following. ## Examples #### Color examples **prompt**: a concept art of by Makoto Shinkai, a girl is standing in the middle of the sea **negative prompt**: text, bad anatomy, blurry, (low quality, blurry) ![images_1)](./1.png) **prompt**: a concept art of by Makoto Shinkai, a girl is standing in the middle of the sea **negative prompt**: text, bad anatomy, blurry, (low quality, blurry) ![images_2)](./2.png) **prompt**: a concept art of by Makoto Shinkai, a girl is standing in the middle of the grass **negative prompt**: text, bad anatomy, blurry, (low quality, blurry) ![images_3)](./3.png) #### Brightness examples This model also can be used to control image brightness. The following images are generated with different brightness conditioning image and controlnet strength(0.5 ~ 0.7). ![images_4)](./4.jpg) ## Limitations and Bias - No strict control by input color - Sometimes generate image with confusion When color description in prompt ## Training **Dataset** We train this model on [laion-art](https://huggingface.co/datasets/laion/laion-art) dataset with 2.6m images, the processed dataset can be found in [ghoskno/laion-art-en-colorcanny](https://huggingface.co/datasets/ghoskno/laion-art-en-colorcanny). **Training Details** - **Hardware**: Google Cloud TPUv4-8 VM - **Optimizer**: AdamW - **Train Batch Size**: 4 x 4 = 16 - **Learning rate**: 0.00001 constant - **Gradient Accumulation Steps**: 4 - **Resolution**: 512 - **Train Steps**: 36000