File size: 8,084 Bytes
1c912cb
 
 
 
 
 
d8abd15
 
1c912cb
bcb47ae
1c912cb
 
f0b9dcc
 
 
 
 
04d2ca4
f0b9dcc
 
 
 
 
 
 
 
 
5069d74
 
 
 
 
 
7f1cdb8
 
 
 
 
 
 
 
 
 
 
 
 
 
bdb3bd4
 
 
 
 
 
1c912cb
 
ea5cba6
1c912cb
a63e059
69de36e
ea5cba6
1c912cb
 
 
 
 
 
b1a57f6
1c912cb
 
 
 
 
 
 
ea5cba6
 
 
 
 
 
1c912cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4140359
 
1c912cb
4140359
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
---
language:
- ro
license: apache-2.0
tags:
- automatic-speech-recognition
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
- gigant/romanian_speech_synthesis_0_8_1
model-index:
- name: wav2vec2-ro-300m_01
  results:
  - task: 
      name: Automatic Speech Recognition 
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event
      type: speech-recognition-community-v2/dev_data
      args: ro
    metrics:
       - name: Dev WER (without LM)
         type: wer
         value: 46.99
       - name: Dev CER (without LM)
         type: cer
         value: 16.04
       - name: Dev WER (with LM)
         type: wer
         value: 38.63
       - name: Dev CER (with LM)
         type: cer
         value: 14.52
  - task: 
      name: Automatic Speech Recognition 
      type: automatic-speech-recognition
    dataset:
      name: Common Voice
      type: mozilla-foundation/common_voice_8_0
      args: ro
    metrics:
       - name: Test WER (without LM)
         type: wer
         value: 11.73
       - name: Test CER (without LM)
         type: cer
         value: 2.93
       - name: Test WER (with LM)
         type: wer
         value: 7.31
       - name: Test CER (with LM)
         type: cer
         value: 2.17
---

# Romanian Wav2Vec2

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the [Common Voice 8.0 - Romanian subset](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) dataset, with extra training data from [Romanian Speech Synthesis](https://huggingface.co/datasets/gigant/romanian_speech_synthesis_0_8_1) dataset.

Without the 5-gram Language Model optimization, it achieves the following results on the evaluation set (Common Voice 8.0, Romanian subset, test split):
- Loss: 0.1553
- Wer: 0.1174
- Cer: 0.0294

## Model description

The architecture is based on [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) with a speech recognition CTC head and an added 5-gram language model (using [pyctcdecode](https://github.com/kensho-technologies/pyctcdecode) and [kenlm](https://github.com/kpu/kenlm)) trained on the [Romanian Corpora Parliament](gigant/ro_corpora_parliament_processed) dataset. Those libraries are needed in order for the language model-boosted decoder to work.

## Intended uses & limitations

More information needed

## Training and evaluation data

Training data :
- [Common Voice 8.0 - Romanian subset](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) : train + validation + other splits
- [Romanian Speech Synthesis](https://huggingface.co/datasets/gigant/romanian_speech_synthesis_0_8_1) : train + test splits

Evaluation data :
- [Common Voice 8.0 - Romanian subset](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) : test split

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 3
- total_train_batch_size: 48
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 50.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
| 2.9272        | 0.78  | 500   | 0.7603          | 0.7734 | 0.2355 |
| 0.6157        | 1.55  | 1000  | 0.4003          | 0.4866 | 0.1247 |
| 0.4452        | 2.33  | 1500  | 0.2960          | 0.3689 | 0.0910 |
| 0.3631        | 3.11  | 2000  | 0.2580          | 0.3205 | 0.0796 |
| 0.3153        | 3.88  | 2500  | 0.2465          | 0.2977 | 0.0747 |
| 0.2795        | 4.66  | 3000  | 0.2274          | 0.2789 | 0.0694 |
| 0.2615        | 5.43  | 3500  | 0.2277          | 0.2685 | 0.0675 |
| 0.2389        | 6.21  | 4000  | 0.2135          | 0.2518 | 0.0627 |
| 0.2229        | 6.99  | 4500  | 0.2054          | 0.2449 | 0.0614 |
| 0.2067        | 7.76  | 5000  | 0.2096          | 0.2378 | 0.0597 |
| 0.1977        | 8.54  | 5500  | 0.2042          | 0.2387 | 0.0600 |
| 0.1896        | 9.32  | 6000  | 0.2110          | 0.2383 | 0.0595 |
| 0.1801        | 10.09 | 6500  | 0.1909          | 0.2165 | 0.0548 |
| 0.174         | 10.87 | 7000  | 0.1883          | 0.2206 | 0.0559 |
| 0.1685        | 11.65 | 7500  | 0.1848          | 0.2097 | 0.0528 |
| 0.1591        | 12.42 | 8000  | 0.1851          | 0.2039 | 0.0514 |
| 0.1537        | 13.2  | 8500  | 0.1881          | 0.2065 | 0.0518 |
| 0.1504        | 13.97 | 9000  | 0.1840          | 0.1972 | 0.0499 |
| 0.145         | 14.75 | 9500  | 0.1845          | 0.2029 | 0.0517 |
| 0.1417        | 15.53 | 10000 | 0.1884          | 0.2003 | 0.0507 |
| 0.1364        | 16.3  | 10500 | 0.2010          | 0.2037 | 0.0517 |
| 0.1331        | 17.08 | 11000 | 0.1838          | 0.1923 | 0.0483 |
| 0.129         | 17.86 | 11500 | 0.1818          | 0.1922 | 0.0489 |
| 0.1198        | 18.63 | 12000 | 0.1760          | 0.1861 | 0.0465 |
| 0.1203        | 19.41 | 12500 | 0.1686          | 0.1839 | 0.0465 |
| 0.1225        | 20.19 | 13000 | 0.1828          | 0.1920 | 0.0479 |
| 0.1145        | 20.96 | 13500 | 0.1673          | 0.1784 | 0.0446 |
| 0.1053        | 21.74 | 14000 | 0.1802          | 0.1810 | 0.0456 |
| 0.1071        | 22.51 | 14500 | 0.1769          | 0.1775 | 0.0444 |
| 0.1053        | 23.29 | 15000 | 0.1920          | 0.1783 | 0.0457 |
| 0.1024        | 24.07 | 15500 | 0.1904          | 0.1775 | 0.0446 |
| 0.0987        | 24.84 | 16000 | 0.1793          | 0.1762 | 0.0446 |
| 0.0949        | 25.62 | 16500 | 0.1801          | 0.1766 | 0.0443 |
| 0.0942        | 26.4  | 17000 | 0.1731          | 0.1659 | 0.0423 |
| 0.0906        | 27.17 | 17500 | 0.1776          | 0.1698 | 0.0424 |
| 0.0861        | 27.95 | 18000 | 0.1716          | 0.1600 | 0.0406 |
| 0.0851        | 28.73 | 18500 | 0.1662          | 0.1630 | 0.0410 |
| 0.0844        | 29.5  | 19000 | 0.1671          | 0.1572 | 0.0393 |
| 0.0792        | 30.28 | 19500 | 0.1768          | 0.1599 | 0.0407 |
| 0.0798        | 31.06 | 20000 | 0.1732          | 0.1558 | 0.0394 |
| 0.0779        | 31.83 | 20500 | 0.1694          | 0.1544 | 0.0388 |
| 0.0718        | 32.61 | 21000 | 0.1709          | 0.1578 | 0.0399 |
| 0.0732        | 33.38 | 21500 | 0.1697          | 0.1523 | 0.0391 |
| 0.0708        | 34.16 | 22000 | 0.1616          | 0.1474 | 0.0375 |
| 0.0678        | 34.94 | 22500 | 0.1698          | 0.1474 | 0.0375 |
| 0.0642        | 35.71 | 23000 | 0.1681          | 0.1459 | 0.0369 |
| 0.0661        | 36.49 | 23500 | 0.1612          | 0.1411 | 0.0357 |
| 0.0629        | 37.27 | 24000 | 0.1662          | 0.1414 | 0.0355 |
| 0.0587        | 38.04 | 24500 | 0.1659          | 0.1408 | 0.0351 |
| 0.0581        | 38.82 | 25000 | 0.1612          | 0.1382 | 0.0352 |
| 0.0556        | 39.6  | 25500 | 0.1647          | 0.1376 | 0.0345 |
| 0.0543        | 40.37 | 26000 | 0.1658          | 0.1335 | 0.0337 |
| 0.052         | 41.15 | 26500 | 0.1716          | 0.1369 | 0.0343 |
| 0.0513        | 41.92 | 27000 | 0.1600          | 0.1317 | 0.0330 |
| 0.0491        | 42.7  | 27500 | 0.1671          | 0.1311 | 0.0328 |
| 0.0463        | 43.48 | 28000 | 0.1613          | 0.1289 | 0.0324 |
| 0.0468        | 44.25 | 28500 | 0.1599          | 0.1260 | 0.0315 |
| 0.0435        | 45.03 | 29000 | 0.1556          | 0.1232 | 0.0308 |
| 0.043         | 45.81 | 29500 | 0.1588          | 0.1240 | 0.0309 |
| 0.0421        | 46.58 | 30000 | 0.1567          | 0.1217 | 0.0308 |
| 0.04          | 47.36 | 30500 | 0.1533          | 0.1198 | 0.0302 |
| 0.0389        | 48.14 | 31000 | 0.1582          | 0.1185 | 0.0297 |
| 0.0387        | 48.91 | 31500 | 0.1576          | 0.1187 | 0.0297 |
| 0.0376        | 49.69 | 32000 | 0.1560          | 0.1182 | 0.0295 |


### Framework versions

- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Tokenizers 0.11.0
- pyctcdecode 0.3.0
- kenlm