{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe4b55690c0>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681038648277885482, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAPwrej+z3XS/7uyXPnzlxj9iGkjAGvaXv5iRAT+qNzO/VW/pPonEpL/V6Kw//Fbav71Mg78v2UU/o6LMv5lygz8XQcW/vQsUPaGPUz9sdvo/GBQkvppeZj908Q+/XqSzP8w5dr+F/B0/Xw0SP1gOc7+LM54+IEqvvllABj9sXtI+ROBAv1wlpL7Tiko/dDo0v4cjqD4MSo+/PUuYPxC6b79iY4O/4JMXP4upmr8z8JI+jY4FPTo/gT4qcEk/TLgwPPB3dz6TSgs/N45qv9Fe/j7MOXa/hfwdP18NEj9YDnO/A+uJP2Wdjj+VWYW8e9F8P7EuJsD4ZWe/rHNdPzOTxb6CakQ/jlo3vxkDM0B+RUy/CZ14v6+BoT8jJATAaoLVv0Va07+Shm6/121EP7EaCUAOmMu+BUjUPSQZhb/EGVs+xBSFPwVpz7+sW+C/WA5zv6q8x70TG40/dOmVu4Ce8j+qZBDA7+OYvseU7b23pd+9CVx3v2sKHcBq6v69aHwrwMbk675oFpG9XhQDPMcmEUAjjNm/6VUhvrxoRj+pZRq+6zKxvn3TCsAdJOI+0OUwP8w5dr+F/B0/rFvgv1gOc7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADtJ642AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA1Yf5vQAAAABKEgHAAAAAAKhZCT4AAAAAHZj7PwAAAAAOPJg9AAAAABSf2j8AAAAAMmrlPQAAAACw7N6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAixNhNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIkPkL0AAAAAcHHcvwAAAADkiVm9AAAAABOF5j8AAAAArJkoPQAAAADUaOc/AAAAABzmr70AAAAAEwn8vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRsYLQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBnaw8+AAAAAIWS2b8AAAAABhQGPgAAAABlfOo/AAAAAHuH5r0AAAAAfd7uPwAAAACvS929AAAAACeL2r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADJYRQ2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcChEvAAAAABmd/6/AAAAAOabkT0AAAAARp36PwAAAABkBco9AAAAAKE3+j8AAAAA54WoPQAAAABIO9q/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIr6SmsNlRSMAWyUTegDjAF0lEdArXrNHJ9y93V9lChoBkdAla+ayjYZmGgHTegDaAhHQK2BXH7xd6d1fZQoaAZHQJeNZElVtGdoB03oA2gIR0Ctgf29L6DXdX2UKGgGR0CW7Sah6By0aAdN6ANoCEdArYL4EW69TXV9lChoBkdAlmlmig00nGgHTegDaAhHQK2KGJAMUh51fZQoaAZHQJPkvYQJ5VxoB03oA2gIR0CtjqsLfDUFdX2UKGgGR0B6t1V6u4gBaAdN6ANoCEdArY8ah37k4nV9lChoBkdAl+cmYfGMoGgHTegDaAhHQK2PvvlU6xR1fZQoaAZHQJy3r8yeqaRoB03oA2gIR0CtlmhdMTN/dX2UKGgGR0CcBuvE0iyIaAdN6ANoCEdArZuoPPLPlnV9lChoBkdAkB/N2X9it2gHTegDaAhHQK2cO6nzg/F1fZQoaAZHQJWvYc6vJRxoB03oA2gIR0CtnR+PJaJRdX2UKGgGR0CWSN9VFQVLaAdN6ANoCEdAraWTqptJnXV9lChoBkdAntc+SGJvYWgHTegDaAhHQK2p9o9s7+11fZQoaAZHQJ3F3JT2nKpoB03oA2gIR0CtqluJLuhLdX2UKGgGR0Cf2kSf16E8aAdN6ANoCEdArar3OfNA1XV9lChoBkdAnbFLUPQOWmgHTegDaAhHQK2xUyzHCGh1fZQoaAZHQJwAn114gRtoB03oA2gIR0CttbFqrR0EdX2UKGgGR0CexRKL876paAdN6ANoCEdArbYbaCcwxnV9lChoBkdAnA95mh/RV2gHTegDaAhHQK22tA44p+d1fZQoaAZHQJ+ISpNsWO9oB03oA2gIR0CtwID6Fds0dX2UKGgGR0CbwjpVS4vwaAdN6ANoCEdArcUnB55Z83V9lChoBkdAnWK33Hq/umgHTegDaAhHQK3FoAI6bON1fZQoaAZHQJ9OaVZ9uxdoB03oA2gIR0Ctxj4EwFkhdX2UKGgGR0CVORww0wajaAdN6ANoCEdArczsAtFrmHV9lChoBkdAkX8Ef1YhdWgHTegDaAhHQK3RWg3974V1fZQoaAZHQJLNxOfukUNoB03oA2gIR0Ct0cN96TnrdX2UKGgGR0CSTj25hBqsaAdN6ANoCEdArdJhh4MWoHV9lChoBkdAk9xzKs+3Y2gHTegDaAhHQK3a+Lyc0+F1fZQoaAZHQJRe7afzz3BoB03oA2gIR0Ct4OG0VrRCdX2UKGgGR0CSaR7tRekYaAdN6ANoCEdAreFKi7Ciy3V9lChoBkdAlYRJ7TlT32gHTegDaAhHQK3h6VJtix51fZQoaAZHQI2TNOXVsk9oB03oA2gIR0Ct6GyGBWgfdX2UKGgGR0CTSM8ejmCAaAdN6ANoCEdArezqCz1K5HV9lChoBkdAmaaz5ftx/GgHTegDaAhHQK3tWqgAZKp1fZQoaAZHQIFd2K64DtBoB03oA2gIR0Ct7fSc9W6tdX2UKGgGR0B6wT9DQZ4waAdN6ANoCEdArfUvv8ZUDXV9lChoBkdAdtY+qioKlmgHTegDaAhHQK3755v99+h1fZQoaAZHQJKPNHvttyhoB03oA2gIR0Ct/IbmlqJudX2UKGgGR0CK8r/ffoA5aAdN6ANoCEdArf1BV81Gb3V9lChoBkdAmi+5of0VamgHTegDaAhHQK4Du3sHB1t1fZQoaAZHQJcWQ9RrJsBoB03oA2gIR0CuCFHOryUcdX2UKGgGR0CXtlkTpPhyaAdN6ANoCEdArgi6BwuM/HV9lChoBkdAmeOxJ/XoT2gHTegDaAhHQK4JWwu/UON1fZQoaAZHQJrFL0Yj0MBoB03oA2gIR0CuD9RdQfp2dX2UKGgGR0CYjYLaEi+taAdN6ANoCEdArhW8FOfukXV9lChoBkdAngYuFtbcGmgHTegDaAhHQK4WYdsBQvZ1fZQoaAZHQJrukqoZQ55oB03oA2gIR0CuF1UhePaMdX2UKGgGR0CfTrtFrl/6aAdN6ANoCEdArh7+HrQgLnV9lChoBkdAnU446Oo5xWgHTegDaAhHQK4jV19ORDF1fZQoaAZHQJ87Z2FFlTZoB03oA2gIR0CuI780cfeUdX2UKGgGR0CenvFz+3pfaAdN6ANoCEdAriRWjEehf3V9lChoBkdAm56S5qdpZmgHTegDaAhHQK4q0XBP9DR1fZQoaAZHQJYYs7kn1FpoB03oA2gIR0CuL0rmZE2HdX2UKGgGR0Cf1bVLSNOuaAdN6ANoCEdAri/peE7GN3V9lChoBkdAndJa5f+jumgHTegDaAhHQK4wzH09QoF1fZQoaAZHQJqnHRoh6jZoB03oA2gIR0CuOhb2Dg62dX2UKGgGR0Cc6wDVH4GmaAdN6ANoCEdArj55w0fozXV9lChoBkdAnPhFPznRs2gHTegDaAhHQK4+5CLuQZJ1fZQoaAZHQJ6kjduYQatoB03oA2gIR0CuP4RLCemOdX2UKGgGR0CfbAyEtdzGaAdN6ANoCEdArkZEdPtUoHV9lChoBkdAneMPgiu+y2gHTegDaAhHQK5Ku4T9KmN1fZQoaAZHQJu5x+F10T1oB03oA2gIR0CuSyVPepGXdX2UKGgGR0Cd3B1dPci4aAdN6ANoCEdArkvFHe7+UHV9lChoBkdAmbPW/i5uqGgHTegDaAhHQK5U0lKK5091fZQoaAZHQJlWTf8/D+BoB03oA2gIR0CuWfuGCZnddX2UKGgGR0CY63fF72L6aAdN6ANoCEdArlpfXsgMdHV9lChoBkdAmhH1QdjoZGgHTegDaAhHQK5a+eQMhHN1fZQoaAZHQJSHJFc6eXloB03oA2gIR0CuYXjc/MW5dX2UKGgGR0CRxcuP3i71aAdN6ANoCEdArmYTNIK+jHV9lChoBkdAk3L+QlruY2gHTegDaAhHQK5mgUypJf91fZQoaAZHQJMrdDD0lJJoB03oA2gIR0CuZyaoESuhdX2UKGgGR0CSfCFUyYXwaAdN6ANoCEdArm7mU6gdwXV9lChoBkdAlVi4dMj/uWgHTegDaAhHQK51aPrfLs91fZQoaAZHQJxC8xFiKBNoB03oA2gIR0CuddDTKDChdX2UKGgGR0CM5P0HyEteaAdN6ANoCEdArnZvFm4Aj3V9lChoBkdAcUqCkXUH6mgHTegDaAhHQK585lpXZGt1fZQoaAZHQJcLqOearm1oB03oA2gIR0CugWtQsPJ8dX2UKGgGR0CETaW/rSmZaAdN6ANoCEdAroHavHLidnV9lChoBkdAZAd7XQMQVmgHTegDaAhHQK6Ce6STyJ91fZQoaAZHQJNhBaQmu1ZoB03oA2gIR0CuiTVHFxXGdX2UKGgGR0CWuhhF3IMjaAdN6ANoCEdAro/fLPldT3V9lChoBkdAmwD898qnWWgHTegDaAhHQK6Qgtsenyd1fZQoaAZHQJn1fiHZbpxoB03oA2gIR0CukYCRGMGYdX2UKGgGR0CcChXBP9DQaAdN6ANoCEdArpiA9zOopHV9lChoBkdAmmFi9VWCE2gHTegDaAhHQK6c3rtVrAR1fZQoaAZHQJqoZnQID5loB03oA2gIR0CunUq6nR9gdX2UKGgGR0CcTyIZIg/1aAdN6ANoCEdArp3rH0btJHV9lChoBkdAm5QEUwi7kGgHTegDaAhHQK6kXj8UEgZ1fZQoaAZHQJvwj0AcT8JoB03oA2gIR0CuqYvsAvL6dX2UKGgGR0Ceyn70WdmQaAdN6ANoCEdArqoprSE123V9lChoBkdAntuq3/givGgHTegDaAhHQK6rGS5AhSt1fZQoaAZHQJGkCBUaQ3hoB03oA2gIR0Cus+Xh4t6HdX2UKGgGR0Cdd6uk1uR+aAdN6ANoCEdArrhRIz3yqnV9lChoBkdAnAUBcmjTKGgHTegDaAhHQK64wzcAR051fZQoaAZHQKBD49VWCEpoB03oA2gIR0CuuWGFi8WcdX2UKGgGR0CgWVAVXV9XaAdN6ANoCEdArr/+BOHnEHV9lChoBkdAn2UlFx4pt2gHTegDaAhHQK7EfCY1He91fZQoaAZHQJrruMl1KXhoB03oA2gIR0CuxOnlXA/LdX2UKGgGR0CW9w7OE/SqaAdN6ANoCEdArsXTsv7FbXVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}