File size: 2,122 Bytes
7657de9
85e3e4a
 
7657de9
85e3e4a
7657de9
 
 
85e3e4a
 
 
7657de9
85e3e4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7657de9
 
 
 
 
85e3e4a
7657de9
85e3e4a
 
 
 
7657de9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d7c408
 
171d7f8
7657de9
 
d1ebce3
4b8b738
7657de9
 
 
85e3e4a
 
 
 
 
 
 
 
 
 
 
7657de9
 
 
 
9d7c408
7657de9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
language:
- ro
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Tiny RO - Georgescu Dumitru
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 17.0
      type: mozilla-foundation/common_voice_11_0
      config: ro
      split: None
      args: 'config: ro, split: test'
    metrics:
    - name: Wer
      type: wer
      value: 37.72910622036657
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Tiny RO - Georgescu Dumitru

This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 17.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4606
- Wer: 37.7291

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-08
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 11.2437       | 1.7986 | 1000 | 0.4601          | 37.6053 |
| 10.9474       | 3.5971 | 2000 | 0.4602          | 37.0002 |
| 10.736        | 5.3957 | 3000 | 0.4604          | 37.5310 |
| 10.6145       | 7.1942 | 4000 | 0.4605          | 37.7114 |
| 10.5325       | 8.9928 | 5000 | 0.4606          | 37.7291 |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1