ppo-LunarLander-v2 / config.json
gilbaes's picture
Upload PPO LunarLander-v2 trained agent
1acd29f
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d1966d11870>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d1966d11900>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d1966d11990>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d1966d11a20>", "_build": "<function ActorCriticPolicy._build at 0x7d1966d11ab0>", "forward": "<function ActorCriticPolicy.forward at 0x7d1966d11b40>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d1966d11bd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d1966d11c60>", "_predict": "<function ActorCriticPolicy._predict at 0x7d1966d11cf0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d1966d11d80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d1966d11e10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d1966d11ea0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d1966caa880>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2007040, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1703003563160756286, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAgAAAAAAAJo01Lw48pq7wtrZvcCHlTxe9AE9akZ+vQAAgD8AAIA/0/J2vl4MEz9uyZG9Dq4Pv9PauL7Ku/c8AAAAAAAAAABNuF89h1VtPyhzVj0nbgW/46wQPogGjT0AAAAAAAAAALPi7D0PhDc/k9CQvfl+7L4/Lhc+CkEbvQAAAAAAAAAA8xJePs/LXT/tBCE+6xn0vgtyrD4atC69AAAAAAAAAADazpY9yQ5jPryymL71+6O+UCKdvfIrdb0AAAAAAAAAAEBmPD5ri+Q+jXizvj37u77rtTu9PQ3SvQAAAAAAAAAA5nOEPV6Mwz0KEXG+zVWNvh6hiL2zLNC8AAAAAAAAAAD69nI+yjkPP4g2Jr76rd6+rvgZPjO4Gr4AAAAAAAAAAE2Ewz1Ix4y6rlmBu12rmzbWKxe5iWINtgAAAAAAAAAAzYK7PLoqBT6VovO9mpervgVBUL18Tai8AAAAAAAAAACar/U9/huCP97Wsj4UAgS/Z9tYPg6dDT4AAAAAAAAAADMzYzpV020/QMbdvD3u974Fa9Q8aGPxuwAAAAAAAAAAgNiyvft60T41vCI9MUvmvlAM7b02vje8AAAAAAAAAAAA9mO8rZXHPmHcOj2vsse+UJxDPKqyBzwAAAAAAAAAADPROrx2TFK8bEXLvYd3zjzLH6g9G5liugAAgD8AAIA/zYRoPfNcgz93ShY9aCQFv8rc1j0gDqG8AAAAAAAAAABNOS+9JctgP5hSIz1AswS/2VEpvKVRqT0AAAAAAAAAAMBzvz0IorQ/5YoNP+NWP76UzsY99vHEPgAAAAAAAAAAsyoivU6rdz+GXda8OusWv15xuL2jrX+8AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSxRLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksUhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG3x/zasZHeMAWyUS8yMAXSUR0C3s3k+X7cgdX2UKGgGR0BwdKjUNKAbaAdL0WgIR0C3s5FZs9B9dX2UKGgGR0ByoQ3HaN+9aAdL2GgIR0C3s6jAFgUldX2UKGgGR0Bw/xSuQp4KaAdL4WgIR0C3s/03S8aodX2UKGgGR0ByM/N3W4EwaAdL72gIR0C3tCF9fCyhdX2UKGgGR0BxV1UdaMaTaAdL9WgIR0C3tGsjzI3jdX2UKGgGR0BwFRe4TbnHaAdL02gIR0C3tHsujASGdX2UKGgGR0BvPgbwSamXaAdLw2gIR0C3vULvTgEVdX2UKGgGR0BzGz4N7SiNaAdL52gIR0C3vVG74BV/dX2UKGgGR0BzL2OFQEZBaAdL02gIR0C3vYOEIw/QdX2UKGgGR0By54re67NCaAdL82gIR0C3vYN52QnydX2UKGgGR0BzmdC+lCTmaAdNBQFoCEdAt72HaXa8H3V9lChoBkdAcU7x5LRKH2gHS+BoCEdAt72WtuDSPXV9lChoBkdAco5bm2b5M2gHS9NoCEdAt72rcXWOInV9lChoBkdAbxJpmEoOQWgHS85oCEdAt73UtpVS43V9lChoBkdAcGavfj0cwWgHS8poCEdAt738/gR9PXV9lChoBkdAbmmb4Ju2qmgHS9poCEdAt74Mf2bobHV9lChoBkdAcT1mDlHSW2gHS81oCEdAt74ZEqlP8HV9lChoBkdAc8htzjm0V2gHS8ZoCEdAt74owlByCHV9lChoBkdAcqmFuejEemgHTRIBaAhHQLe+LKp1ifB1fZQoaAZHQHGPwdS2phpoB0vqaAhHQLe+fUtqYZ51fZQoaAZHQHKPiD28IzFoB0vOaAhHQLe+nCV8kUt1fZQoaAZHQHEc+0b961NoB0veaAhHQLe+qiy6cy51fZQoaAZHQHADhib2Dg9oB0veaAhHQLe++0GNaQp1fZQoaAZHQHLYQgTyrghoB00eAWgIR0C3vwD3IuGsdX2UKGgGR0BwRyhf0EowaAdL7GgIR0C3vxLjYI0JdX2UKGgGR0BwiAFMZgogaAdL1GgIR0C3vywD/2kBdX2UKGgGR0BxVn+NtIkJaAdL0WgIR0C3v1hJAdGRdX2UKGgGR0BzqLVf/m1ZaAdL0mgIR0C3v1rZFocrdX2UKGgGR0Bxluro4dZJaAdL5mgIR0C3v172USqVdX2UKGgGR0ByXntrsSkCaAdL1mgIR0C3v3NEgGKRdX2UKGgGR0BxlllOGj9GaAdL2mgIR0C3v5BBJI1+dX2UKGgGR0ByGXqfOD8MaAdL62gIR0C3v5S5/b0wdX2UKGgGR0BxxzCMxXXAaAdLwmgIR0C3v6+BYmsvdX2UKGgGR0ByHUEeQuEmaAdL12gIR0C3v84qslsxdX2UKGgGR0BxkfHbRF7VaAdL1mgIR0C3v/ZZwGW2dX2UKGgGR0BxQgiiZfD2aAdL5GgIR0C3wAJv5xiodX2UKGgGR0BzMluDSPU8aAdNAAFoCEdAt8AD/ffoBHV9lChoBkdAcVLU1AJLNGgHS+NoCEdAt8AQkNWluXV9lChoBkdAS88JWvKU3WgHS6poCEdAt8AhtrKvFHV9lChoBkdAbpOLlV94NmgHS81oCEdAt8B/wob4rXV9lChoBkdAc0XSflIVd2gHS+hoCEdAt8Ct+PRzBHV9lChoBkdAbsNrv9cbBGgHS8FoCEdAt8D1VwPy1HV9lChoBkdAc+BOBlMAWGgHS9RoCEdAt8E0Pd2xIXV9lChoBkdAcFwc3EQ5FWgHS9doCEdAt8FbsOXmeXV9lChoBkdAcLe0EHMUy2gHS+JoCEdAt8Gq3/givHV9lChoBkdAcc7pmVZ9u2gHS9hoCEdAt8HYbvPTonV9lChoBkdAcn5NsnAqNWgHS8FoCEdAt8HkJMQEp3V9lChoBkdAczfP/JeVs2gHS9xoCEdAt8HuQV9F4XV9lChoBkdAcXk4c3l0YGgHS8hoCEdAt8H3/7zkIXV9lChoBkdAceOtthuwYGgHS95oCEdAt8IWJDVpbnV9lChoBkdAcMc/FzdUKmgHS85oCEdAt8I+glF+eHV9lChoBkdAct6mW+oLomgHS/loCEdAt8JEkleF+XV9lChoBkdAbpoH1OCXhWgHS85oCEdAt8Ki3lS0jXV9lChoBkdAc9aG1QZXMmgHS9FoCEdAt8LDQC0WuXV9lChoBkdAbwaSnLq2SmgHS9poCEdAt8Leq4pc5nV9lChoBkdAcZrMuvllsmgHS/hoCEdAt8LyX2M85nV9lChoBkdAcPdZeRgZ0mgHS+FoCEdAt8MYAzYVZnV9lChoBkdAckxuqWC2+mgHS+9oCEdAt8MvZi/fwnV9lChoBkdAcpbp3HJcPmgHS89oCEdAt8M4d5prUXV9lChoBkdAcY01He7+UGgHS/VoCEdAt8O6rzXjEXV9lChoBkdAcqcdYW+GoWgHS+NoCEdAt8Pns2NvO3V9lChoBkdAca6mnO0LMWgHS9loCEdAt8Puef7Jn3V9lChoBkdAczlHD7655WgHTQ4BaAhHQLfEJCSA6Ml1fZQoaAZHQHH84B3iaRZoB0vFaAhHQLfEOaPCEYh1fZQoaAZHQHBnKr3j+71oB0vYaAhHQLfESd9Ujs51fZQoaAZHQHMmnHWBjF1oB0vwaAhHQLfEV7rs0Hh1fZQoaAZHQHGaSvovBadoB0vHaAhHQLfEWUC7sfJ1fZQoaAZHQHHLPQv6CUZoB0vlaAhHQLfEYPkJa7p1fZQoaAZHQG8toSUTtb9oB0vtaAhHQLfEa1TisGR1fZQoaAZHQHKze9zwMH9oB0vlaAhHQLfEbLr5ZbJ1fZQoaAZHQHFLv2TPjXFoB0veaAhHQLfEiw22oeh1fZQoaAZHQHFAWVzIV/NoB0vbaAhHQLfExX1J17p1fZQoaAZHQGf/FrVOKwZoB03oA2gIR0C3xMq6asp5dX2UKGgGR0Bw9FmBe5WjaAdL2WgIR0C3xNUAtFrmdX2UKGgGR0BwHE+QlruZaAdLwmgIR0C3xN1JQLuydX2UKGgGR0BxVaD5CWu6aAdL3GgIR0C3xOpdOZb7dX2UKGgGR0BQqK+nIhhZaAdLjGgIR0C3xOoEjgQ6dX2UKGgGR0BwHPiEQGwBaAdLw2gIR0C3xPMZ1mrbdX2UKGgGR0BwreWdEsreaAdL4GgIR0C3xPsLORkmdX2UKGgGR0B0SULThHbzaAdL1WgIR0C3xQuclPaddX2UKGgGR0BxcnSv1UVBaAdLz2gIR0C3xZXAZbY9dX2UKGgGR0BwkvP+n62waAdL5mgIR0C3xcshLXcydX2UKGgGR0BweAcFQl8gaAdLy2gIR0C3xeI/zJ6qdX2UKGgGR0BxBjcIqsltaAdL4GgIR0C3xgF3t8eCdX2UKGgGR0BzNRdyDIzWaAdL0WgIR0C3xh4hEBsAdX2UKGgGR0Bw75P420iRaAdL2GgIR0C3xiWYF7ladX2UKGgGR0BzkB+kP+XJaAdL5mgIR0C3xmCJTER8dX2UKGgGR0BxTq+De0ojaAdL72gIR0C3xmM/yGzsdX2UKGgGR0Bz5bww0wajaAdL52gIR0C3xo0hq0tzdX2UKGgGR0ByyYhib2DhaAdL0WgIR0C3xp/WlMyrdX2UKGgGR0Bxqtg2Ifr9aAdLyWgIR0C3xsj2exwAdX2UKGgGR0BxGfpOerdWaAdL4GgIR0C3xs83hn8LdX2UKGgGR0ByF1FH8TBZaAdL4GgIR0C3xuI/A0sOdX2UKGgGR0BzFLf779AHaAdNGAFoCEdAt8bsaR6ni3V9lChoBkdAcOpRfF72MGgHS+VoCEdAt8b2lSCOFXV9lChoBkdAb+oXu3MINWgHS85oCEdAt8b/i6xxDXV9lChoBkdAci3v0RODa2gHS+FoCEdAt8b+X9itrHV9lChoBkdAcrC6uW8h92gHS+NoCEdAt8cWy0KJEnV9lChoBkdAbu9EFW4mTmgHS/1oCEdAt8c1r+Hae3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 490, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 20, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "False", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}