File size: 12,150 Bytes
fd1b4b8 d0ac69c fd1b4b8 d0ac69c fd1b4b8 d0ac69c fd1b4b8 d0ac69c fd1b4b8 d0ac69c fd1b4b8 d0ac69c fd1b4b8 d0ac69c fd1b4b8 d0ac69c fd1b4b8 d0ac69c fd1b4b8 d0ac69c fd1b4b8 d0ac69c fd1b4b8 d0ac69c fd1b4b8 d0ac69c fd1b4b8 d0ac69c fd1b4b8 d0ac69c fd1b4b8 d0ac69c fd1b4b8 d0ac69c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
library_name: transformers
license: cc-by-4.0
base_model: eduagarcia/RoBERTaLexPT-base
tags:
- generated_from_trainer
datasets:
- ulysses_ner_br
model-index:
- name: robertalex-ptbr-ulyssesner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# robertalex-ptbr-ulyssesner
This model is a fine-tuned version of [eduagarcia/RoBERTaLexPT-base](https://huggingface.co/eduagarcia/RoBERTaLexPT-base) on the ulysses_ner_br dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0711
- Data: {'precision': 0.96, 'recall': 1.0, 'f1': 0.9795918367346939, 'number': 72}
- Evento: {'precision': 0.6666666666666666, 'recall': 0.4, 'f1': 0.5, 'number': 5}
- Fundamento: {'precision': 0.7967479674796748, 'recall': 0.9158878504672897, 'f1': 0.8521739130434782, 'number': 107}
- Local: {'precision': 0.950354609929078, 'recall': 0.9241379310344827, 'f1': 0.9370629370629371, 'number': 145}
- Organizacao: {'precision': 0.75, 'recall': 0.8888888888888888, 'f1': 0.8135593220338982, 'number': 81}
- Pessoa: {'precision': 0.823076923076923, 'recall': 0.9385964912280702, 'f1': 0.8770491803278688, 'number': 114}
- Produtodelei: {'precision': 0.6470588235294118, 'recall': 0.717391304347826, 'f1': 0.6804123711340206, 'number': 46}
- Overall Precision: 0.8368
- Overall Recall: 0.9088
- Overall F1: 0.8713
- Overall Accuracy: 0.9860
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Data | Evento | Fundamento | Local | Organizacao | Pessoa | Produtodelei | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.4776 | 1.0 | 71 | 0.2170 | {'precision': 1.0, 'recall': 0.4166666666666667, 'f1': 0.5882352941176471, 'number': 72} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | {'precision': 0.5714285714285714, 'recall': 0.5607476635514018, 'f1': 0.5660377358490566, 'number': 107} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 145} | {'precision': 0.13445378151260504, 'recall': 0.5925925925925926, 'f1': 0.2191780821917808, 'number': 81} | {'precision': 0.16793893129770993, 'recall': 0.19298245614035087, 'f1': 0.17959183673469387, 'number': 114} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 46} | 0.2528 | 0.2807 | 0.2660 | 0.9344 |
| 0.124 | 2.0 | 142 | 0.0854 | {'precision': 0.8666666666666667, 'recall': 0.9027777777777778, 'f1': 0.8843537414965987, 'number': 72} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | {'precision': 0.7165354330708661, 'recall': 0.8504672897196262, 'f1': 0.7777777777777777, 'number': 107} | {'precision': 0.8187919463087249, 'recall': 0.8413793103448276, 'f1': 0.8299319727891157, 'number': 145} | {'precision': 0.6078431372549019, 'recall': 0.7654320987654321, 'f1': 0.6775956284153005, 'number': 81} | {'precision': 0.8303571428571429, 'recall': 0.8157894736842105, 'f1': 0.8230088495575222, 'number': 114} | {'precision': 0.6590909090909091, 'recall': 0.6304347826086957, 'f1': 0.6444444444444444, 'number': 46} | 0.7586 | 0.8105 | 0.7837 | 0.9783 |
| 0.0463 | 3.0 | 213 | 0.0699 | {'precision': 0.9210526315789473, 'recall': 0.9722222222222222, 'f1': 0.9459459459459458, 'number': 72} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | {'precision': 0.7404580152671756, 'recall': 0.9065420560747663, 'f1': 0.8151260504201681, 'number': 107} | {'precision': 0.9236111111111112, 'recall': 0.9172413793103448, 'f1': 0.9204152249134949, 'number': 145} | {'precision': 0.7156862745098039, 'recall': 0.9012345679012346, 'f1': 0.7978142076502731, 'number': 81} | {'precision': 0.8048780487804879, 'recall': 0.868421052631579, 'f1': 0.8354430379746836, 'number': 114} | {'precision': 0.6304347826086957, 'recall': 0.6304347826086957, 'f1': 0.6304347826086957, 'number': 46} | 0.8055 | 0.8789 | 0.8406 | 0.9838 |
| 0.0277 | 4.0 | 284 | 0.0709 | {'precision': 0.9473684210526315, 'recall': 1.0, 'f1': 0.972972972972973, 'number': 72} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | {'precision': 0.8347826086956521, 'recall': 0.897196261682243, 'f1': 0.8648648648648648, 'number': 107} | {'precision': 0.9246575342465754, 'recall': 0.9310344827586207, 'f1': 0.9278350515463917, 'number': 145} | {'precision': 0.7553191489361702, 'recall': 0.8765432098765432, 'f1': 0.8114285714285715, 'number': 81} | {'precision': 0.796875, 'recall': 0.8947368421052632, 'f1': 0.8429752066115702, 'number': 114} | {'precision': 0.6481481481481481, 'recall': 0.7608695652173914, 'f1': 0.7000000000000001, 'number': 46} | 0.8336 | 0.8965 | 0.8639 | 0.9833 |
| 0.0165 | 5.0 | 355 | 0.0640 | {'precision': 0.9473684210526315, 'recall': 1.0, 'f1': 0.972972972972973, 'number': 72} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | {'precision': 0.8448275862068966, 'recall': 0.9158878504672897, 'f1': 0.8789237668161435, 'number': 107} | {'precision': 0.9640287769784173, 'recall': 0.9241379310344827, 'f1': 0.943661971830986, 'number': 145} | {'precision': 0.8111111111111111, 'recall': 0.9012345679012346, 'f1': 0.8538011695906432, 'number': 81} | {'precision': 0.7969924812030075, 'recall': 0.9298245614035088, 'f1': 0.8582995951417005, 'number': 114} | {'precision': 0.673469387755102, 'recall': 0.717391304347826, 'f1': 0.6947368421052631, 'number': 46} | 0.8543 | 0.9053 | 0.8790 | 0.9848 |
| 0.0087 | 6.0 | 426 | 0.0612 | {'precision': 0.9594594594594594, 'recall': 0.9861111111111112, 'f1': 0.9726027397260274, 'number': 72} | {'precision': 0.5, 'recall': 0.2, 'f1': 0.28571428571428575, 'number': 5} | {'precision': 0.8048780487804879, 'recall': 0.9252336448598131, 'f1': 0.8608695652173913, 'number': 107} | {'precision': 0.9574468085106383, 'recall': 0.9310344827586207, 'f1': 0.9440559440559441, 'number': 145} | {'precision': 0.8131868131868132, 'recall': 0.9135802469135802, 'f1': 0.8604651162790699, 'number': 81} | {'precision': 0.8333333333333334, 'recall': 0.9210526315789473, 'f1': 0.875, 'number': 114} | {'precision': 0.7083333333333334, 'recall': 0.7391304347826086, 'f1': 0.723404255319149, 'number': 46} | 0.8579 | 0.9105 | 0.8834 | 0.9873 |
| 0.0057 | 7.0 | 497 | 0.0691 | {'precision': 0.9473684210526315, 'recall': 1.0, 'f1': 0.972972972972973, 'number': 72} | {'precision': 1.0, 'recall': 0.2, 'f1': 0.33333333333333337, 'number': 5} | {'precision': 0.784, 'recall': 0.9158878504672897, 'f1': 0.8448275862068965, 'number': 107} | {'precision': 0.9375, 'recall': 0.9310344827586207, 'f1': 0.9342560553633218, 'number': 145} | {'precision': 0.8202247191011236, 'recall': 0.9012345679012346, 'f1': 0.8588235294117647, 'number': 81} | {'precision': 0.8106060606060606, 'recall': 0.9385964912280702, 'f1': 0.8699186991869918, 'number': 114} | {'precision': 0.5789473684210527, 'recall': 0.717391304347826, 'f1': 0.6407766990291262, 'number': 46} | 0.8317 | 0.9105 | 0.8693 | 0.9866 |
| 0.0042 | 8.0 | 568 | 0.0701 | {'precision': 0.96, 'recall': 1.0, 'f1': 0.9795918367346939, 'number': 72} | {'precision': 0.3333333333333333, 'recall': 0.2, 'f1': 0.25, 'number': 5} | {'precision': 0.8181818181818182, 'recall': 0.9252336448598131, 'f1': 0.868421052631579, 'number': 107} | {'precision': 0.9640287769784173, 'recall': 0.9241379310344827, 'f1': 0.943661971830986, 'number': 145} | {'precision': 0.7634408602150538, 'recall': 0.8765432098765432, 'f1': 0.8160919540229884, 'number': 81} | {'precision': 0.828125, 'recall': 0.9298245614035088, 'f1': 0.8760330578512396, 'number': 114} | {'precision': 0.6538461538461539, 'recall': 0.7391304347826086, 'f1': 0.693877551020408, 'number': 46} | 0.8462 | 0.9070 | 0.8755 | 0.9863 |
| 0.0029 | 9.0 | 639 | 0.0713 | {'precision': 0.96, 'recall': 1.0, 'f1': 0.9795918367346939, 'number': 72} | {'precision': 0.6666666666666666, 'recall': 0.4, 'f1': 0.5, 'number': 5} | {'precision': 0.8448275862068966, 'recall': 0.9158878504672897, 'f1': 0.8789237668161435, 'number': 107} | {'precision': 0.9436619718309859, 'recall': 0.9241379310344827, 'f1': 0.9337979094076655, 'number': 145} | {'precision': 0.7708333333333334, 'recall': 0.9135802469135802, 'f1': 0.8361581920903954, 'number': 81} | {'precision': 0.8294573643410853, 'recall': 0.9385964912280702, 'f1': 0.8806584362139916, 'number': 114} | {'precision': 0.6415094339622641, 'recall': 0.7391304347826086, 'f1': 0.6868686868686867, 'number': 46} | 0.8485 | 0.9140 | 0.8801 | 0.9860 |
| 0.0025 | 10.0 | 710 | 0.0711 | {'precision': 0.96, 'recall': 1.0, 'f1': 0.9795918367346939, 'number': 72} | {'precision': 0.6666666666666666, 'recall': 0.4, 'f1': 0.5, 'number': 5} | {'precision': 0.7967479674796748, 'recall': 0.9158878504672897, 'f1': 0.8521739130434782, 'number': 107} | {'precision': 0.950354609929078, 'recall': 0.9241379310344827, 'f1': 0.9370629370629371, 'number': 145} | {'precision': 0.75, 'recall': 0.8888888888888888, 'f1': 0.8135593220338982, 'number': 81} | {'precision': 0.823076923076923, 'recall': 0.9385964912280702, 'f1': 0.8770491803278688, 'number': 114} | {'precision': 0.6470588235294118, 'recall': 0.717391304347826, 'f1': 0.6804123711340206, 'number': 46} | 0.8368 | 0.9088 | 0.8713 | 0.9860 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1
|