--- language: - ko license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer base_model: openai/whisper-base datasets: - 4method15000_freetalk_matched model-index: - name: baseWhisper_finetune results: [] --- # baseWhisper_finetune This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the 4method15000 dataset. It achieves the following results on the evaluation set: - Loss: 0.4846 - Cer: 11.7739 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 128 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.0043 | 21.2766 | 1000 | 0.4846 | 11.7739 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1