--- license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.9 --- # ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.4700 - Accuracy: 0.9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9627 | 1.0 | 112 | 0.7284 | 0.75 | | 0.3776 | 1.99 | 224 | 0.4641 | 0.83 | | 0.4536 | 3.0 | 337 | 0.5534 | 0.85 | | 0.0602 | 4.0 | 449 | 0.4999 | 0.86 | | 0.1927 | 4.99 | 561 | 0.5989 | 0.85 | | 0.0122 | 6.0 | 674 | 0.7778 | 0.85 | | 0.0006 | 6.99 | 786 | 0.4095 | 0.9 | | 0.0005 | 8.0 | 899 | 0.5149 | 0.9 | | 0.1723 | 9.0 | 1011 | 0.4558 | 0.9 | | 0.0001 | 9.99 | 1123 | 0.4700 | 0.9 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3