girolamodiceglie
commited on
Commit
•
e7c153b
1
Parent(s):
66d06d9
Upload sentiment.ipynb
Browse files- sentiment.ipynb +438 -0
sentiment.ipynb
ADDED
@@ -0,0 +1,438 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 4,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"#Pre-processamento dei dati il metodo riceve in input una stringa e ne restituisce il suo pre-processamento\n",
|
10 |
+
"from nltk.tokenize import word_tokenize\n",
|
11 |
+
"from nltk.corpus import stopwords\n",
|
12 |
+
"from nltk.stem import WordNetLemmatizer\n",
|
13 |
+
"import string\n",
|
14 |
+
"\n",
|
15 |
+
"def preprocess_text(text):\n",
|
16 |
+
" #Lower text\n",
|
17 |
+
" tokens = word_tokenize(text.lower())\n",
|
18 |
+
" #Rimozione stop words\n",
|
19 |
+
" filtered_tokens = [token for token in tokens if token not in stopwords.words('italian')]\n",
|
20 |
+
" #Lemmatizzazione\n",
|
21 |
+
" lemmatizer = WordNetLemmatizer()\n",
|
22 |
+
" lemmatized_tokens = [lemmatizer.lemmatize(token) for token in filtered_tokens]\n",
|
23 |
+
" #Join lemmatizzazione del testo\n",
|
24 |
+
" processed_text = ' '.join(lemmatized_tokens)\n",
|
25 |
+
" #Eliminazione punteggiatura\n",
|
26 |
+
" return processed_text.translate(str.maketrans('','', string.punctuation))"
|
27 |
+
]
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"cell_type": "code",
|
31 |
+
"execution_count": null,
|
32 |
+
"metadata": {},
|
33 |
+
"outputs": [],
|
34 |
+
"source": [
|
35 |
+
"import nltk\n",
|
36 |
+
"nltk.download()"
|
37 |
+
]
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"cell_type": "code",
|
41 |
+
"execution_count": null,
|
42 |
+
"metadata": {},
|
43 |
+
"outputs": [],
|
44 |
+
"source": [
|
45 |
+
"#Importazione del dataframe\n",
|
46 |
+
"import pandas as pd\n",
|
47 |
+
"\n",
|
48 |
+
"#Dataset ngt\n",
|
49 |
+
"df_ngt = pd.read_csv('ngt_sentiment_dataset/ngt_lang_dataset.csv')\n",
|
50 |
+
"\n",
|
51 |
+
"print(df_ngt.describe())\n",
|
52 |
+
"\n",
|
53 |
+
"X_ngt = df_ngt.text.apply(preprocess_text)\n",
|
54 |
+
"y_ngt = df_ngt.tag\n",
|
55 |
+
"\n",
|
56 |
+
"print(X_ngt[0])\n",
|
57 |
+
"print(y_ngt[0])"
|
58 |
+
]
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"cell_type": "code",
|
62 |
+
"execution_count": null,
|
63 |
+
"metadata": {},
|
64 |
+
"outputs": [],
|
65 |
+
"source": [
|
66 |
+
"#Vettorizzazione del testo tramite tokenizzazione\n",
|
67 |
+
"from keras.preprocessing.text import Tokenizer\n",
|
68 |
+
"from keras.preprocessing.sequence import pad_sequences\n",
|
69 |
+
"import numpy as np\n",
|
70 |
+
"from sklearn.model_selection import train_test_split\n",
|
71 |
+
"\n",
|
72 |
+
"maxlen = 100\n",
|
73 |
+
"max_words = 10000\n",
|
74 |
+
"\n",
|
75 |
+
"tokenizer = Tokenizer(num_words=max_words)\n",
|
76 |
+
"tokenizer.fit_on_texts(X_ngt)\n",
|
77 |
+
"sequences = tokenizer.texts_to_sequences(X_ngt)\n",
|
78 |
+
"word_index = tokenizer.word_index\n",
|
79 |
+
"print('Found %s unique tokens' % len(word_index))\n",
|
80 |
+
"\n",
|
81 |
+
"X_ngt = pad_sequences(sequences, maxlen=maxlen)\n",
|
82 |
+
"\n",
|
83 |
+
"y_ngt = np.asarray(y_ngt)\n",
|
84 |
+
"\n",
|
85 |
+
"indices = np.arange(X_ngt.shape[0])\n",
|
86 |
+
"\n",
|
87 |
+
"np.random.shuffle(indices)\n",
|
88 |
+
"X_ngt = X_ngt[indices]\n",
|
89 |
+
"y_ngt = y_ngt[indices]\n",
|
90 |
+
"\n",
|
91 |
+
"X_train, X_test, y_train, y_test = train_test_split(X_ngt, y_ngt, test_size=0.2, shuffle=True)"
|
92 |
+
]
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"cell_type": "code",
|
96 |
+
"execution_count": null,
|
97 |
+
"metadata": {},
|
98 |
+
"outputs": [],
|
99 |
+
"source": [
|
100 |
+
"\n",
|
101 |
+
"sentence = input(\"Enter the sentence: \")\n",
|
102 |
+
"\n",
|
103 |
+
"preprocess_text(sentence)"
|
104 |
+
]
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"cell_type": "code",
|
108 |
+
"execution_count": null,
|
109 |
+
"metadata": {},
|
110 |
+
"outputs": [],
|
111 |
+
"source": [
|
112 |
+
"\n",
|
113 |
+
"df_train = pd.read_csv('recensioni_train.csv')\n",
|
114 |
+
"df_test = pd.read_csv('recensioni_test.csv')\n",
|
115 |
+
"\n",
|
116 |
+
"X_train = df_train['text'].apply(preprocess_text)\n",
|
117 |
+
"X_test = df_test['text'].apply(preprocess_text)\n",
|
118 |
+
"\n",
|
119 |
+
"tags_train = df_train['tag']\n",
|
120 |
+
"tags_test = df_test['tag']\n",
|
121 |
+
"\n",
|
122 |
+
"y_train = []\n",
|
123 |
+
"y_test = []\n",
|
124 |
+
"\n",
|
125 |
+
"#Train\n",
|
126 |
+
"for e in tags_train:\n",
|
127 |
+
" if e=='pos':\n",
|
128 |
+
" y_train.append(1)\n",
|
129 |
+
" else:\n",
|
130 |
+
" y_train.append(0)\n",
|
131 |
+
"\n",
|
132 |
+
"#Test\n",
|
133 |
+
"for e in tags_test:\n",
|
134 |
+
" if e=='pos':\n",
|
135 |
+
" y_test.append(1)\n",
|
136 |
+
" else:\n",
|
137 |
+
" y_test.append(0)\n",
|
138 |
+
"\n"
|
139 |
+
]
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"cell_type": "code",
|
143 |
+
"execution_count": null,
|
144 |
+
"metadata": {},
|
145 |
+
"outputs": [],
|
146 |
+
"source": [
|
147 |
+
"#######################\n",
|
148 |
+
"\n",
|
149 |
+
"tokenizer_train = Tokenizer(num_words=10000)\n",
|
150 |
+
"tokenizer_train.fit_on_texts(X_train)\n",
|
151 |
+
"sequences_train = tokenizer_train.texts_to_sequences(X_train)\n",
|
152 |
+
"word_index_train = tokenizer_train.word_index\n",
|
153 |
+
"print('Found %s unique tokens' % len(word_index_train))\n",
|
154 |
+
"\n",
|
155 |
+
"print(X_train[0])\n",
|
156 |
+
"print(y_train[0])\n",
|
157 |
+
"\n",
|
158 |
+
"#######################\n",
|
159 |
+
"\n",
|
160 |
+
"tokenizer_test = Tokenizer(num_words=10000)\n",
|
161 |
+
"tokenizer_test.fit_on_texts(X_test)\n",
|
162 |
+
"sequences_test = tokenizer_test.texts_to_sequences(X_test)\n",
|
163 |
+
"word_index_test = tokenizer_test.word_index\n",
|
164 |
+
"print('Found %s unique tokens' % len(word_index_test))\n",
|
165 |
+
"\n",
|
166 |
+
"print(X_test[0])\n",
|
167 |
+
"print(y_test[0])"
|
168 |
+
]
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"cell_type": "code",
|
172 |
+
"execution_count": null,
|
173 |
+
"metadata": {},
|
174 |
+
"outputs": [],
|
175 |
+
"source": [
|
176 |
+
"#Dataset NGT\n",
|
177 |
+
"\n",
|
178 |
+
"tokenizer_ngt = Tokenizer(num_words=10000)\n",
|
179 |
+
"tokenizer_ngt.fit_on_texts(X_ngt)\n",
|
180 |
+
"sequences_ngt = tokenizer_ngt.texts_to_sequences(X_ngt)\n",
|
181 |
+
"word_index_ngt = tokenizer_ngt.word_index\n",
|
182 |
+
"print('Found %s unique tokens' % len(word_index_ngt))\n"
|
183 |
+
]
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"cell_type": "code",
|
187 |
+
"execution_count": null,
|
188 |
+
"metadata": {},
|
189 |
+
"outputs": [],
|
190 |
+
"source": [
|
191 |
+
"#Dataset NGT\n",
|
192 |
+
"\n",
|
193 |
+
"X_ngt = pad_sequences(sequences_ngt)\n",
|
194 |
+
"y_ngt = np.asarray(y_ngt)\n",
|
195 |
+
"indices_ngt = np.arange(X_ngt.shape[0])\n",
|
196 |
+
"\n",
|
197 |
+
"\n",
|
198 |
+
"np.random.shuffle(indices_ngt)\n",
|
199 |
+
"X_ngt = X_ngt[indices_ngt]\n",
|
200 |
+
"y_ngt = y_ngt[indices_ngt]\n",
|
201 |
+
"\n",
|
202 |
+
"X_train, X_test, y_train, y_test = train_test_split(X_ngt, y_ngt, test_size=0.2)\n"
|
203 |
+
]
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"cell_type": "code",
|
207 |
+
"execution_count": null,
|
208 |
+
"metadata": {},
|
209 |
+
"outputs": [],
|
210 |
+
"source": [
|
211 |
+
"print(X_train[0])\n",
|
212 |
+
"print(y_train[0])\n",
|
213 |
+
"\n",
|
214 |
+
"print(X_test[0])\n",
|
215 |
+
"print(y_test[0])"
|
216 |
+
]
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"cell_type": "code",
|
220 |
+
"execution_count": null,
|
221 |
+
"metadata": {},
|
222 |
+
"outputs": [],
|
223 |
+
"source": [
|
224 |
+
"X_train = pad_sequences(sequences_train)\n",
|
225 |
+
"y_train = np.asarray(y_train)\n",
|
226 |
+
"indices_train = np.arange(X_train.shape[0])\n",
|
227 |
+
"\n",
|
228 |
+
"\n",
|
229 |
+
"X_test = pad_sequences(sequences_test)\n",
|
230 |
+
"y_test = np.asarray(y_test)\n",
|
231 |
+
"indices_test = np.arange(X_test.shape[0])\n",
|
232 |
+
"\n",
|
233 |
+
"print(indices_train)\n",
|
234 |
+
"print(X_train[0])\n",
|
235 |
+
"print(y_train[0])\n"
|
236 |
+
]
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"cell_type": "code",
|
240 |
+
"execution_count": null,
|
241 |
+
"metadata": {},
|
242 |
+
"outputs": [],
|
243 |
+
"source": [
|
244 |
+
"np.random.shuffle(indices_train)\n",
|
245 |
+
"X_train = X_train[indices_train]\n",
|
246 |
+
"y_train = y_train[indices_train]\n",
|
247 |
+
"\n",
|
248 |
+
"\n",
|
249 |
+
"np.random.shuffle(indices_test)\n",
|
250 |
+
"X_test = X_train[indices_test]\n",
|
251 |
+
"y_test = y_train[indices_test]"
|
252 |
+
]
|
253 |
+
},
|
254 |
+
{
|
255 |
+
"cell_type": "code",
|
256 |
+
"execution_count": null,
|
257 |
+
"metadata": {},
|
258 |
+
"outputs": [],
|
259 |
+
"source": [
|
260 |
+
"X_train.shape\n",
|
261 |
+
"\n",
|
262 |
+
"print(X_train.dtype)\n"
|
263 |
+
]
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"cell_type": "code",
|
267 |
+
"execution_count": null,
|
268 |
+
"metadata": {},
|
269 |
+
"outputs": [],
|
270 |
+
"source": [
|
271 |
+
"from keras.models import Sequential\n",
|
272 |
+
"from keras.layers import Dense\n",
|
273 |
+
"\n",
|
274 |
+
"model = Sequential()\n",
|
275 |
+
"\n",
|
276 |
+
"model.add(Dense(512, activation='relu'))\n",
|
277 |
+
"model.add(Dense(32, activation='relu'))\n",
|
278 |
+
"model.add(Dense(1, activation='sigmoid'))\n",
|
279 |
+
"\n",
|
280 |
+
"#model.compile(optimizer='SGD', loss='binary_crossentropy', metrics=['acc'])\n",
|
281 |
+
"#model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc'])\n",
|
282 |
+
"model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['acc'])\n",
|
283 |
+
"\n",
|
284 |
+
"history = model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_test, y_test))"
|
285 |
+
]
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"cell_type": "code",
|
289 |
+
"execution_count": null,
|
290 |
+
"metadata": {},
|
291 |
+
"outputs": [],
|
292 |
+
"source": [
|
293 |
+
"model.summary()"
|
294 |
+
]
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"cell_type": "code",
|
298 |
+
"execution_count": null,
|
299 |
+
"metadata": {},
|
300 |
+
"outputs": [],
|
301 |
+
"source": [
|
302 |
+
"#Tracciamento dei risultati\n",
|
303 |
+
"import matplotlib.pyplot as plt\n",
|
304 |
+
"\n",
|
305 |
+
"acc = history.history['acc']\n",
|
306 |
+
"val_acc = history.history['val_acc']\n",
|
307 |
+
"loss = history.history['loss']\n",
|
308 |
+
"val_loss = history.history['val_loss']\n",
|
309 |
+
"\n",
|
310 |
+
"epochs = range(1, len(acc) + 1)\n",
|
311 |
+
"\n",
|
312 |
+
"plt.plot(epochs, acc, 'bo', label='Training acc')\n",
|
313 |
+
"plt.plot(epochs, val_acc, 'b', label='Validation acc')\n",
|
314 |
+
"plt.title('Training and validation accuracy')\n",
|
315 |
+
"plt.legend()\n",
|
316 |
+
"\n",
|
317 |
+
"plt.figure()\n",
|
318 |
+
"\n",
|
319 |
+
"plt.plot(epochs, loss, 'bo', label='Training loss')\n",
|
320 |
+
"plt.plot(epochs, val_loss, 'b', label='Validation loss')\n",
|
321 |
+
"plt.title('Training and validation loss')\n",
|
322 |
+
"plt.legend()\n",
|
323 |
+
"plt.show()"
|
324 |
+
]
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"cell_type": "code",
|
328 |
+
"execution_count": null,
|
329 |
+
"metadata": {},
|
330 |
+
"outputs": [],
|
331 |
+
"source": [
|
332 |
+
"\n",
|
333 |
+
"#Salvataggio del modello\n",
|
334 |
+
"\n",
|
335 |
+
"model.save('binary.keras')\n",
|
336 |
+
"\n"
|
337 |
+
]
|
338 |
+
},
|
339 |
+
{
|
340 |
+
"cell_type": "code",
|
341 |
+
"execution_count": null,
|
342 |
+
"metadata": {},
|
343 |
+
"outputs": [],
|
344 |
+
"source": [
|
345 |
+
"# Dataset ngt\n",
|
346 |
+
"# model.add(Dense(512, activation='relu'))\n",
|
347 |
+
"# model.add(Dense(8, activation='relu'))\n",
|
348 |
+
"# model.add(Dense(1, activation='sigmoid'))\n",
|
349 |
+
"\n",
|
350 |
+
"\n",
|
351 |
+
"# model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['acc'])\n",
|
352 |
+
"\n",
|
353 |
+
"# history = model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_test, y_test))\n",
|
354 |
+
"\n",
|
355 |
+
"\n",
|
356 |
+
"# Epoch 10/10\n",
|
357 |
+
"# 100/100 [==============================] - 0s 3ms/step - loss: 0.6099 - acc: 0.6712 - val_loss: 0.6311 - val_acc: 0.6525\n",
|
358 |
+
"\n",
|
359 |
+
"\n",
|
360 |
+
"################################################\n",
|
361 |
+
"\n",
|
362 |
+
"\n",
|
363 |
+
"# Altro dataset\n",
|
364 |
+
"# model.add(Dense(512, activation='relu'))\n",
|
365 |
+
"# model.add(Dense(32, activation='relu'))\n",
|
366 |
+
"# model.add(Dense(1, activation='sigmoid'))\n",
|
367 |
+
"\n",
|
368 |
+
"# model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['acc'])\n",
|
369 |
+
"\n",
|
370 |
+
"# history = model.fit(X_train, y_train, epochs=5, batch_size=32, validation_data=(X_test, y_test))\n",
|
371 |
+
"\n",
|
372 |
+
"# Epoch 5/5\n",
|
373 |
+
"# 63/63 [==============================] - 0s 3ms/step - loss: 0.5344 - acc: 0.7185 - val_loss: 0.5255 - val_acc: 0.7525"
|
374 |
+
]
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"cell_type": "code",
|
378 |
+
"execution_count": 19,
|
379 |
+
"metadata": {},
|
380 |
+
"outputs": [
|
381 |
+
{
|
382 |
+
"name": "stdout",
|
383 |
+
"output_type": "stream",
|
384 |
+
"text": [
|
385 |
+
"1/1 [==============================] - 0s 51ms/step\n",
|
386 |
+
"NEGATIVO 58 %\n"
|
387 |
+
]
|
388 |
+
}
|
389 |
+
],
|
390 |
+
"source": [
|
391 |
+
"#Test\n",
|
392 |
+
"\n",
|
393 |
+
"#load model\n",
|
394 |
+
"from keras.models import load_model\n",
|
395 |
+
"from keras.preprocessing.sequence import pad_sequences\n",
|
396 |
+
"from keras.preprocessing.text import Tokenizer\n",
|
397 |
+
"from keras.preprocessing.text import Tokenizer\n",
|
398 |
+
"\n",
|
399 |
+
"loaded_model = load_model('sentiment_dfngt.keras')\n",
|
400 |
+
"\n",
|
401 |
+
"sentence = input(\"Enter the sentence: \")\n",
|
402 |
+
"sequence = preprocess_text(sentence)\n",
|
403 |
+
"sequence = Tokenizer().texts_to_sequences([sequence])\n",
|
404 |
+
"test = pad_sequences(sequence, maxlen=100)\n",
|
405 |
+
"yhat = loaded_model.predict(test)\n",
|
406 |
+
"\n",
|
407 |
+
"threshold = 0.5\n",
|
408 |
+
"\n",
|
409 |
+
"if yhat > threshold:\n",
|
410 |
+
" print('POSITIVO', int((yhat)*100), '%')\n",
|
411 |
+
"else:\n",
|
412 |
+
" print('NEGATIVO', int((1-yhat)*100), '%')"
|
413 |
+
]
|
414 |
+
}
|
415 |
+
],
|
416 |
+
"metadata": {
|
417 |
+
"kernelspec": {
|
418 |
+
"display_name": "Python 3",
|
419 |
+
"language": "python",
|
420 |
+
"name": "python3"
|
421 |
+
},
|
422 |
+
"language_info": {
|
423 |
+
"codemirror_mode": {
|
424 |
+
"name": "ipython",
|
425 |
+
"version": 3
|
426 |
+
},
|
427 |
+
"file_extension": ".py",
|
428 |
+
"mimetype": "text/x-python",
|
429 |
+
"name": "python",
|
430 |
+
"nbconvert_exporter": "python",
|
431 |
+
"pygments_lexer": "ipython3",
|
432 |
+
"version": "3.11.5"
|
433 |
+
},
|
434 |
+
"orig_nbformat": 4
|
435 |
+
},
|
436 |
+
"nbformat": 4,
|
437 |
+
"nbformat_minor": 2
|
438 |
+
}
|