ppo-LunarLander-v2 / config.json
giuseppemassafra's picture
Upload PPO LunarLander-v2 trained agent
22d8fd2
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x794f22fdab90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x794f22fdac20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x794f22fdacb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x794f22fdad40>", "_build": "<function ActorCriticPolicy._build at 0x794f22fdadd0>", "forward": "<function ActorCriticPolicy.forward at 0x794f22fdae60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x794f22fdaef0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x794f22fdaf80>", "_predict": "<function ActorCriticPolicy._predict at 0x794f22fdb010>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x794f22fdb0a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x794f22fdb130>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x794f22fdb1c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x794f22fe4f00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689673279819178218, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3GkD1iD7w+qz4IvsRnfL68hWU8Tjn/vAAAAAAAAAAAzQOgvSn8Bbpx0743hGLBMiNt9brVLty2AAAAAAAAgD+aSfq7PEG1P9IPRr9ulmk+HB8RPLV0Mz4AAAAAAAAAAM3N4zxBivU9iolTvi2YWb7D8wy+L908vQAAAAAAAAAAGqF7PXKGtD/nR6k+3F9cvptYgj1CsTo+AAAAAAAAAACAjWQ91zp5PJBVKDzn712+4pWoPMCXRzoAAAAAAAAAAKYLgb3PSwO885EgPA/OozzNi2Q9zi6IvQAAgD8AAIA/89S0vddjejjPEYG2mvJUsdalzzuK3Jc1AAAAAAAAgD/t8wS+LjDVPu79hD4nMY++TuzZPTIq5b0AAAAAAAAAADMBCTwpuHa6yJMauj/nD7msyJU6+q5EOQAAgD8AAIA/ZggFPBTyPz92a4C9oN+VvrNOj7tisM88AAAAAAAAAABmFAe+X2QPP+uVsj2s/6e+pNyqvU/fgT0AAAAAAAAAAICUYj10Wb4/r2uxPh4cHz0upTY9moYLPgAAAAAAAAAAmncXPXv/qj2+cuS8J6cmvokgwLxwrUM9AAAAAAAAAADmDQW9PYIUu/KDcDvDEDQ8g1W5u65WSTwAAIA/AACAP8Cilr2uTms/DMfDO6tvrb6/+gy99jmqPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAQAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFgt30PH1iMAWyUTTMBjAF0lEdAlCa1CLMs6XV9lChoBkdAbrtWkJrtV2gHTUYBaAhHQJQmxT4tYjl1fZQoaAZHQDpPSb6P8yhoB0vvaAhHQJQm4RSP2f11fZQoaAZHQHKvYzeoDPpoB00CAWgIR0CUJz/wy6+WdX2UKGgGR0BwDtREWqLkaAdNEwFoCEdAlCeJosZpBXV9lChoBkdAb9kXv6TGHmgHTRQBaAhHQJQnmNjslcB1fZQoaAZHQHLY5D/lyR1oB00oAWgIR0CUKFwwTM7mdX2UKGgGR0Bve5Zr56+naAdNpQFoCEdAlCkTF2mpEXV9lChoBkdARiX/BFd9lWgHS+JoCEdAlCnpCSidrnV9lChoBkdAcd06l+EytWgHTQYBaAhHQJQrt+rlvIh1fZQoaAZHQHDqP2K2rn1oB00iAWgIR0CULBarmyPddX2UKGgGR0ByM1NbkfcOaAdNJAFoCEdAlCxx8QZn+XV9lChoBkdAcrXM/QjUu2gHTScBaAhHQJQsxp/PPcB1fZQoaAZHQHJXwH/tICloB00nAWgIR0CULWGz8gp0dX2UKGgGR0ByXFnezlcRaAdNKQFoCEdAlC4OyRjjJnV9lChoBkdAcvyd9Ujs2WgHTQgBaAhHQJQvPhDPWx11fZQoaAZHQHFYMUZeiSJoB0v8aAhHQJQvQleF+NN1fZQoaAZHQHG60K7ZnL9oB00rAWgIR0CUMFXe3x4IdX2UKGgGR0BvT7A8B+4LaAdNHwFoCEdAlDDetjkMkXV9lChoBkdAbnutlqagEmgHTUMBaAhHQJQxRenhsIp1fZQoaAZHQHD+LngYP5JoB00oAWgIR0CUMkng5zYFdX2UKGgGR0BuU2A08/2TaAdNIAFoCEdAlDLWGdqcmXV9lChoBkdAbc1lGwzLwGgHTWMBaAhHQJQzQjqv/zd1fZQoaAZHQG9usvZh8Y1oB00VAWgIR0CUM2nctXgcdX2UKGgGR0BxbnY5DJEIaAdL8WgIR0CUM/Qkona4dX2UKGgGR0BwBhsabWmQaAdL/WgIR0CUNepLEk0KdX2UKGgGR0BxtsTqSowVaAdNJQFoCEdAlDYCZSeiBXV9lChoBkdAclM9GZuyeWgHTR4BaAhHQJQ2GjCYTkB1fZQoaAZHQHDje/UONHZoB00aAWgIR0CUN+AEt/WldX2UKGgGR0BxC2iyprDZaAdNFAFoCEdAlDlOTRplBnV9lChoBkdAcnsuJ1q33GgHTWcBaAhHQJQ5woZydWh1fZQoaAZHQHG6bWRRuTBoB00lAWgIR0CUOhTFVDKHdX2UKGgGR0BwmLr3TNMXaAdNDAFoCEdAlDpYqoZQ53V9lChoBkdAcM6LWI42j2gHS/5oCEdAlDrK8UVSGnV9lChoBkdAcjy3MINVimgHTboCaAhHQJQ66O6unuR1fZQoaAZHQHGanPJJXhhoB00GAWgIR0CUPgE4NqgzdX2UKGgGR0BxMGiSJTESaAdL/WgIR0CUPnuBczIndX2UKGgGR0BwnWTpxFRYaAdNRAFoCEdAlD9ihakhzXV9lChoBkdAbzZoqTbFj2gHTT0BaAhHQJQ/2c8Tzup1fZQoaAZHQG9DP0I1LrZoB00cAWgIR0CUQ6E384xUdX2UKGgGR0BxohrTH80laAdNJQFoCEdAlEPUBsANonV9lChoBkdAcG/OmixmkGgHTZ8BaAhHQJRGKXKKYRd1fZQoaAZHQHFbexbB42VoB00NAWgIR0CURxp9JBgNdX2UKGgGR0BvEURxtHhCaAdNMQFoCEdAlEeHLeQ+2XV9lChoBkdAcwEattALRmgHTQcBaAhHQJRHtVwPy091fZQoaAZHQHJ7jch1TzdoB00EAWgIR0CUSIAPd2xIdX2UKGgGR0BtwAAEMb3oaAdNKgFoCEdAlEkSGahHsnV9lChoBkdAVLlKGtZFHGgHS9BoCEdAlEmXkgfU4XV9lChoBkdAccvrGR3eN2gHTbEBaAhHQJRbm8rZrYZ1fZQoaAZHQHII1Vo6CDpoB01IAWgIR0CUW9+VTrE+dX2UKGgGR0BxskP8Q7LdaAdNFQFoCEdAlFxwbuMMqnV9lChoBkdAcrMQCSzPbGgHTXMBaAhHQJRc0J1JUYN1fZQoaAZHQG9YyMkyDZloB00eAWgIR0CUXdsAvL5idX2UKGgGR0ByDPaqS5iFaAdNqwJoCEdAlF6Ug4ffXXV9lChoBkdANEUvK2a2F2gHS+NoCEdAlF+NKyv9tXV9lChoBkdAcojfkmx+rmgHTR4BaAhHQJRgL93r2QJ1fZQoaAZHQG+wLFn7HhloB0v+aAhHQJRhMjUutfZ1fZQoaAZHQG+RedK/VRVoB00XAWgIR0CUYcgRbr1NdX2UKGgGR0BzJeTeO4oaaAdNAgFoCEdAlGHpM6BAfXV9lChoBkdAclAHzH0btWgHTRMBaAhHQJRiAP8Q7Ld1fZQoaAZHQHI+R/3Fkx1oB0v4aAhHQJRjsma6ST11fZQoaAZHQHKli8SPEKpoB00eAWgIR0CUY9WxQizLdX2UKGgGR0Bx345lvqC6aAdNkAFoCEdAlGPn/o7muHV9lChoBkdAcoVIY3vQW2gHTQkBaAhHQJRkhPJq7Ad1fZQoaAZHQHBpBnSOR1ZoB01JAWgIR0CUZL4XXRPXdX2UKGgGR0BxXFY7q6e5aAdNBQFoCEdAlGTxOgxrSHV9lChoBkdAcQJx59mYjWgHTR4BaAhHQJRl7igkC3h1fZQoaAZHQHG+rEUCaJBoB00ZAWgIR0CUZ5SsbNr1dX2UKGgGR0BylFMi8nNQaAdL+2gIR0CUaVjFAE+xdX2UKGgGR0Bxt36fra/RaAdNYwFoCEdAlGlvPw/gSHV9lChoBkdAcqw7Uoa1kWgHTSUBaAhHQJRp0wJw84h1fZQoaAZHQG+pB9Cu2Z1oB00WAWgIR0CUayjEvTPTdX2UKGgGR0Bwol85S3spaAdNLgFoCEdAlGxxHskY43V9lChoBkdAbJeGM4tHx2gHTQgBaAhHQJRtJedCmdl1fZQoaAZHQG+j1/tpmEpoB00KAWgIR0CUbU4d6sySdX2UKGgGR0BwxSpaRp1zaAdNjgFoCEdAlG1emixmkHV9lChoBkdAcQhc9GI9DGgHS/doCEdAlG3HHeaa1HV9lChoBkdAcohAckt292gHTSEBaAhHQJRt5Oxjawl1fZQoaAZHQHBntnf2saNoB00mAWgIR0CUbtlgMMJAdX2UKGgGR0By79i8WbgCaAdNAgFoCEdAlG9PmozeoHV9lChoBkdAcwlZCv5gxGgHTS0BaAhHQJRvTPrv9cd1fZQoaAZHQHEcaM72crloB00iAWgIR0CUcrEfT1CgdX2UKGgGR0BwxKkEcKgJaAdL+GgIR0CUcwTbWVeKdX2UKGgGR0ByOQlOXVslaAdNAAFoCEdAlHOB7E5yVHV9lChoBkdAcf1RJVbRnmgHS/doCEdAlHUzn3cpLHV9lChoBkdAcnjke6qbSmgHTQYBaAhHQJR3mDyvs7d1fZQoaAZHQG4oHQpnYg9oB0v8aAhHQJR4NvCMxXZ1fZQoaAZHQGViRiw0O3FoB03oA2gIR0CUeHMo+fRNdX2UKGgGR0BtoqbF0gbIaAdNVAFoCEdAlHh0u14PgHV9lChoBkdAcROl/YraumgHTRgBaAhHQJR5aF+NLlF1fZQoaAZHQHDgUI1LrX1oB00fAWgIR0CUegZdOZb7dX2UKGgGR0BzACnxaxHHaAdNFQFoCEdAlHvFJDmbLHV9lChoBkdAcUNoHs1KoWgHTREBaAhHQJR8TYQJ5Vx1fZQoaAZHQHCGkrwvxpdoB00WAWgIR0CUfJQ1rIo3dX2UKGgGR0By3oHLRrrPaAdL8WgIR0CUf3LGJemfdX2UKGgGR0Bv7pXCCSRsaAdNewFoCEdAlH+c4T9KmXV9lChoBkdAcmzENvwVkGgHTQkBaAhHQJSAaCI1tO51fZQoaAZHQG9gm96C17ZoB00zAWgIR0CUg3wqRU3odX2UKGgGR0BuFVuUD+zdaAdNEwFoCEdAlIOK59Vmz3V9lChoBkdAcBWfBN21UmgHS/RoCEdAlIQQWWQfZHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}