File size: 27,437 Bytes
122685f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:1M<n<10M
- loss:CoSENTLoss
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
base_model: distilbert/distilbert-base-uncased
widget:
- source_sentence: B C C_L CENTER TUNNEL VERT Other XXXX GENERIC G-S
  sentences:
  - T L ENG TO RAD SWITCH 90 Deg Front 2015 P552 VOLTS
  - T RCM ENS 071 RCM ENS EFPR VOLT 90 Deg Front 2021 CX430 VOLTS
  - T L ROCKER AT B PILLAR LONG 90 Deg Front 2020 V363N G-S
- source_sentence: T L F DUMMY PELVIS LAT 90 Deg Front 2021 P702 G-S
  sentences:
  - T L F DUMMY PELVIS LAT 90 Deg Front 2021 CX727 G-S
  - T FIXTURE BASE FRONT ACCEL VERT ACCEL Linear Test 2025 U717 G-S
  - T R ROCKER AT B_PILLAR LONG 30 Deg Front Angular Right 2025 CX430 G-S
- source_sentence: T L F DUMMY PELVIS LAT 90 Deg Front 2021 CX727 G-S
  sentences:
  - T R F DUMMY PELVIS LAT 90 Deg Front 2021 P702 G-S
  - T L F DUMMY PELVIS LONG 30 Deg Front Angular Left 2020 P558 G-S
  - T R F DUMMY L LOWER TIBIA MY LOAD 90 Deg Front 2022 U553 IN-LBS
- source_sentence: T R F DUMMY CHEST VERT 90 Deg Front 2021 P702 G-S
  sentences:
  - T R F DUMMY CHEST VERT 90 Deg Front 2015 P552 G-S
  - T L F DUMMY R LOWER TIBIA MX LOAD 90 Deg Front 2021 CX727 IN-LBS
  - T REAR DIFFERENTIAL LONG 30 Deg Front Angular Left 2020 P558 G-S
- source_sentence: T ENGINE TRANS TOP LAT 90 Deg Front 2025 U717 G-S
  sentences:
  - T R F ACTIVE VENT SQUIB VOLT 90 Deg Front 2021 P702 VOLTS
  - T ENGINE TRANS TOP LAT 30 Deg Front Angular Left 2020 P558 G-S
  - T R F DUMMY CHEST VERT 90 Deg Frontal Impact Simulation 2024 CX727 G-S
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on distilbert/distilbert-base-uncased
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev
      type: sts-dev
    metrics:
    - type: pearson_cosine
      value: 0.4517523751963131
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.4761555869182568
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.42531457338882206
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.46381946353811704
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.4261708588640235
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.4651666003446995
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.3897944292190218
      name: Pearson Dot
    - type: spearman_dot
      value: 0.37404050621023377
      name: Spearman Dot
    - type: pearson_max
      value: 0.4517523751963131
      name: Pearson Max
    - type: spearman_max
      value: 0.4761555869182568
      name: Spearman Max
    - type: pearson_cosine
      value: 0.4412143708585779
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.4670631031564122
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.4156386809751022
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.4559676784726118
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.41671687323124873
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.45746069501329756
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.37528926047569405
      name: Pearson Dot
    - type: spearman_dot
      value: 0.36286227520562186
      name: Spearman Dot
    - type: pearson_max
      value: 0.4412143708585779
      name: Pearson Max
    - type: spearman_max
      value: 0.4670631031564122
      name: Spearman Max
---

# SentenceTransformer based on distilbert/distilbert-base-uncased

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) <!-- at revision 12040accade4e8a0f71eabdb258fecc2e7e948be -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'T ENGINE TRANS TOP LAT 90 Deg Front 2025 U717 G-S',
    'T R F ACTIVE VENT SQUIB VOLT 90 Deg Front 2021 P702 VOLTS',
    'T ENGINE TRANS TOP LAT 30 Deg Front Angular Left 2020 P558 G-S',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.4518     |
| **spearman_cosine** | **0.4762** |
| pearson_manhattan   | 0.4253     |
| spearman_manhattan  | 0.4638     |
| pearson_euclidean   | 0.4262     |
| spearman_euclidean  | 0.4652     |
| pearson_dot         | 0.3898     |
| spearman_dot        | 0.374      |
| pearson_max         | 0.4518     |
| spearman_max        | 0.4762     |

#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.4412     |
| **spearman_cosine** | **0.4671** |
| pearson_manhattan   | 0.4156     |
| spearman_manhattan  | 0.456      |
| pearson_euclidean   | 0.4167     |
| spearman_euclidean  | 0.4575     |
| pearson_dot         | 0.3753     |
| spearman_dot        | 0.3629     |
| pearson_max         | 0.4412     |
| spearman_max        | 0.4671     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 8,081,275 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                          | score                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             | float                                                          |
  | details | <ul><li>min: 23 tokens</li><li>mean: 31.48 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 30.06 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.44</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                                                                 | sentence2                                                                                         | score                            |
  |:--------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|:---------------------------------|
  | <code>T L F DUMMY PELVIS VERT Dynamic Seat Sled Test 2025 U718 G-S</code> | <code>T SCS R2 HY REF 059 R C PLR REF Y SM LAT 90 Deg / Left Side Decel-4g 2020 CX483 G-S</code>  | <code>0.21129386503072142</code> |
  | <code>T L F DUMMY PELVIS VERT Dynamic Seat Sled Test 2025 U718 G-S</code> | <code>T R F DUMMY PELVIS VERT 75 Deg Oblique Right Side 10 in. Pole 2015 P552 G-S</code>          | <code>0.4972955033248179</code>  |
  | <code>T L F DUMMY PELVIS VERT Dynamic Seat Sled Test 2025 U718 G-S</code> | <code>T SCS L1 HY REF 053 L B PLR REF Y SM LAT 90 Deg Front Bumper Override 2021 CX727 G-S</code> | <code>0.5701051768787058</code>  |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

### Evaluation Dataset

#### Unnamed Dataset


* Size: 1,726,581 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                          | score                                                          |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             | float                                                          |
  | details | <ul><li>min: 22 tokens</li><li>mean: 25.0 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 31.04 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.44</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                                                                                        | sentence2                                                                                         | score                            |
  |:-------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|:---------------------------------|
  | <code>T R F ADAPTIVE TETHER VENT SQUIB VOLT 30 Deg Front Angular Right 20xx GENERIC VOLTS</code> | <code>T L F DUMMY T12 LONG 27 Deg Crabbed Left Side NHTSA 214 MDB to vehicle 2015 P552 G-S</code> | <code>0.6835618484879796</code>  |
  | <code>T R F ADAPTIVE TETHER VENT SQUIB VOLT 30 Deg Front Angular Right 20xx GENERIC VOLTS</code> | <code>T L F DUMMY R FEMUR LONG 90 Deg Front 2022 U553 G-S</code>                                  | <code>0.666531064739</code>      |
  | <code>T R F ADAPTIVE TETHER VENT SQUIB VOLT 30 Deg Front Angular Right 20xx GENERIC VOLTS</code> | <code>T R F DUMMY NECK UPPER MZ LOAD 90 Deg Front 2019 P375ICA IN-LBS</code>                      | <code>0.46391834212079874</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `learning_rate`: 3e-05
- `num_train_epochs`: 4
- `warmup_ratio`: 0.1
- `fp16`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 3e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 4
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 0
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: False
- `include_tokens_per_second`: False
- `neftune_noise_alpha`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch  | Step   | Training Loss | loss   | sts-dev_spearman_cosine |
|:------:|:------:|:-------------:|:------:|:-----------------------:|
| 0.0317 | 1000   | 6.3069        | -      | -                       |
| 0.0634 | 2000   | 6.1793        | -      | -                       |
| 0.0950 | 3000   | 6.1607        | -      | -                       |
| 0.1267 | 4000   | 6.1512        | -      | -                       |
| 0.1584 | 5000   | 6.1456        | -      | -                       |
| 0.1901 | 6000   | 6.1419        | -      | -                       |
| 0.2218 | 7000   | 6.1398        | -      | -                       |
| 0.2534 | 8000   | 6.1377        | -      | -                       |
| 0.2851 | 9000   | 6.1352        | -      | -                       |
| 0.3168 | 10000  | 6.1338        | -      | -                       |
| 0.3485 | 11000  | 6.1332        | -      | -                       |
| 0.3801 | 12000  | 6.1309        | -      | -                       |
| 0.4118 | 13000  | 6.1315        | -      | -                       |
| 0.4435 | 14000  | 6.1283        | -      | -                       |
| 0.4752 | 15000  | 6.129         | -      | -                       |
| 0.5069 | 16000  | 6.1271        | -      | -                       |
| 0.5385 | 17000  | 6.1265        | -      | -                       |
| 0.5702 | 18000  | 6.1238        | -      | -                       |
| 0.6019 | 19000  | 6.1234        | -      | -                       |
| 0.6336 | 20000  | 6.1225        | -      | -                       |
| 0.6653 | 21000  | 6.1216        | -      | -                       |
| 0.6969 | 22000  | 6.1196        | -      | -                       |
| 0.7286 | 23000  | 6.1198        | -      | -                       |
| 0.7603 | 24000  | 6.1178        | -      | -                       |
| 0.7920 | 25000  | 6.117         | -      | -                       |
| 0.8236 | 26000  | 6.1167        | -      | -                       |
| 0.8553 | 27000  | 6.1165        | -      | -                       |
| 0.8870 | 28000  | 6.1149        | -      | -                       |
| 0.9187 | 29000  | 6.1146        | -      | -                       |
| 0.9504 | 30000  | 6.113         | -      | -                       |
| 0.9820 | 31000  | 6.1143        | -      | -                       |
| 1.0    | 31567  | -             | 6.1150 | 0.4829                  |
| 1.0137 | 32000  | 6.1115        | -      | -                       |
| 1.0454 | 33000  | 6.111         | -      | -                       |
| 1.0771 | 34000  | 6.1091        | -      | -                       |
| 1.1088 | 35000  | 6.1094        | -      | -                       |
| 1.1404 | 36000  | 6.1078        | -      | -                       |
| 1.1721 | 37000  | 6.1095        | -      | -                       |
| 1.2038 | 38000  | 6.106         | -      | -                       |
| 1.2355 | 39000  | 6.1071        | -      | -                       |
| 1.2671 | 40000  | 6.1073        | -      | -                       |
| 1.2988 | 41000  | 6.1064        | -      | -                       |
| 1.3305 | 42000  | 6.1047        | -      | -                       |
| 1.3622 | 43000  | 6.1054        | -      | -                       |
| 1.3939 | 44000  | 6.1048        | -      | -                       |
| 1.4255 | 45000  | 6.1053        | -      | -                       |
| 1.4572 | 46000  | 6.1058        | -      | -                       |
| 1.4889 | 47000  | 6.1037        | -      | -                       |
| 1.5206 | 48000  | 6.1041        | -      | -                       |
| 1.5523 | 49000  | 6.1023        | -      | -                       |
| 1.5839 | 50000  | 6.1018        | -      | -                       |
| 1.6156 | 51000  | 6.104         | -      | -                       |
| 1.6473 | 52000  | 6.1004        | -      | -                       |
| 1.6790 | 53000  | 6.1027        | -      | -                       |
| 1.7106 | 54000  | 6.1017        | -      | -                       |
| 1.7423 | 55000  | 6.1011        | -      | -                       |
| 1.7740 | 56000  | 6.1002        | -      | -                       |
| 1.8057 | 57000  | 6.0994        | -      | -                       |
| 1.8374 | 58000  | 6.0985        | -      | -                       |
| 1.8690 | 59000  | 6.0986        | -      | -                       |
| 1.9007 | 60000  | 6.1006        | -      | -                       |
| 1.9324 | 61000  | 6.0983        | -      | -                       |
| 1.9641 | 62000  | 6.0983        | -      | -                       |
| 1.9958 | 63000  | 6.0973        | -      | -                       |
| 2.0    | 63134  | -             | 6.1193 | 0.4828                  |
| 2.0274 | 64000  | 6.0943        | -      | -                       |
| 2.0591 | 65000  | 6.0941        | -      | -                       |
| 2.0908 | 66000  | 6.0936        | -      | -                       |
| 2.1225 | 67000  | 6.0909        | -      | -                       |
| 2.1541 | 68000  | 6.0925        | -      | -                       |
| 2.1858 | 69000  | 6.0932        | -      | -                       |
| 2.2175 | 70000  | 6.0939        | -      | -                       |
| 2.2492 | 71000  | 6.0919        | -      | -                       |
| 2.2809 | 72000  | 6.0932        | -      | -                       |
| 2.3125 | 73000  | 6.0916        | -      | -                       |
| 2.3442 | 74000  | 6.0919        | -      | -                       |
| 2.3759 | 75000  | 6.0919        | -      | -                       |
| 2.4076 | 76000  | 6.0911        | -      | -                       |
| 2.4393 | 77000  | 6.0924        | -      | -                       |
| 2.4709 | 78000  | 6.0911        | -      | -                       |
| 2.5026 | 79000  | 6.0922        | -      | -                       |
| 2.5343 | 80000  | 6.0926        | -      | -                       |
| 2.5660 | 81000  | 6.0911        | -      | -                       |
| 2.5976 | 82000  | 6.0897        | -      | -                       |
| 2.6293 | 83000  | 6.0922        | -      | -                       |
| 2.6610 | 84000  | 6.0908        | -      | -                       |
| 2.6927 | 85000  | 6.0884        | -      | -                       |
| 2.7244 | 86000  | 6.0907        | -      | -                       |
| 2.7560 | 87000  | 6.0904        | -      | -                       |
| 2.7877 | 88000  | 6.0881        | -      | -                       |
| 2.8194 | 89000  | 6.0902        | -      | -                       |
| 2.8511 | 90000  | 6.088         | -      | -                       |
| 2.8828 | 91000  | 6.0888        | -      | -                       |
| 2.9144 | 92000  | 6.0884        | -      | -                       |
| 2.9461 | 93000  | 6.0881        | -      | -                       |
| 2.9778 | 94000  | 6.0896        | -      | -                       |
| 3.0    | 94701  | -             | 6.1225 | 0.4788                  |
| 3.0095 | 95000  | 6.0857        | -      | -                       |
| 3.0412 | 96000  | 6.0838        | -      | -                       |
| 3.0728 | 97000  | 6.0843        | -      | -                       |
| 3.1045 | 98000  | 6.0865        | -      | -                       |
| 3.1362 | 99000  | 6.0827        | -      | -                       |
| 3.1679 | 100000 | 6.0836        | -      | -                       |
| 3.1995 | 101000 | 6.0837        | -      | -                       |
| 3.2312 | 102000 | 6.0836        | -      | -                       |
| 3.2629 | 103000 | 6.0837        | -      | -                       |
| 3.2946 | 104000 | 6.084         | -      | -                       |
| 3.3263 | 105000 | 6.0836        | -      | -                       |
| 3.3579 | 106000 | 6.0808        | -      | -                       |
| 3.3896 | 107000 | 6.0821        | -      | -                       |
| 3.4213 | 108000 | 6.0817        | -      | -                       |
| 3.4530 | 109000 | 6.082         | -      | -                       |
| 3.4847 | 110000 | 6.083         | -      | -                       |
| 3.5163 | 111000 | 6.0829        | -      | -                       |
| 3.5480 | 112000 | 6.0832        | -      | -                       |
| 3.5797 | 113000 | 6.0829        | -      | -                       |
| 3.6114 | 114000 | 6.0837        | -      | -                       |
| 3.6430 | 115000 | 6.082         | -      | -                       |
| 3.6747 | 116000 | 6.0823        | -      | -                       |
| 3.7064 | 117000 | 6.082         | -      | -                       |
| 3.7381 | 118000 | 6.0833        | -      | -                       |
| 3.7698 | 119000 | 6.0831        | -      | -                       |
| 3.8014 | 120000 | 6.0814        | -      | -                       |
| 3.8331 | 121000 | 6.0813        | -      | -                       |
| 3.8648 | 122000 | 6.0797        | -      | -                       |
| 3.8965 | 123000 | 6.0793        | -      | -                       |
| 3.9282 | 124000 | 6.0818        | -      | -                       |
| 3.9598 | 125000 | 6.0806        | -      | -                       |
| 3.9915 | 126000 | 6.08          | -      | -                       |
| 4.0    | 126268 | -             | 6.1266 | 0.4671                  |

</details>

### Framework Versions
- Python: 3.10.6
- Sentence Transformers: 3.0.0
- Transformers: 4.35.0
- PyTorch: 2.1.0a0+4136153
- Accelerate: 0.30.1
- Datasets: 2.14.1
- Tokenizers: 0.14.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### CoSENTLoss
```bibtex
@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->