File size: 1,374 Bytes
905c722
1c1cc00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d11b202
905c722
 
1c1cc00
905c722
1c1cc00
905c722
1c1cc00
905c722
1c1cc00
 
905c722
1c1cc00
905c722
1c1cc00
905c722
1c1cc00
 
 
905c722
1c1cc00
 
 
 
 
 
905c722
1c1cc00
905c722
1c1cc00
 
905c722
1c1cc00
 
905c722
1c1cc00
905c722
1c1cc00
 
 
905c722
1c1cc00
905c722
1c1cc00
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
base_model: google/gemma-2-9b-it
datasets:
- nroggendorff/eap
language:
- en
license: mit
tags:
- trl
- sft
- art
- code
- adam
- mistral
model-index:
- name: eap
  results: []
pipeline_tag: text-generation
---

# Edgar Allen Poe LLM

EAP is a language model fine-tuned on the [EAP dataset](https://huggingface.co/datasets/nroggendorff/eap) using Supervised Fine-Tuning (SFT) and Teacher Reinforced Learning (TRL) techniques.

## Features

- Utilizes SFT and TRL techniques for improved performance
- Supports English language

## Usage

To use the LLM, you can load the model using the Hugging Face Transformers library:

```python
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import torch

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16
)

model_id = "nroggendorff/gemma-eap"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config)

prompt = "[INST] Write a poem about tomatoes in the style of Poe.[/INST]"
inputs = tokenizer(prompt, return_tensors="pt")

outputs = model.generate(**inputs)

generated_text = tokenizer.batch_decode(outputs)[0]
print(generated_text)
```

## License

This project is licensed under the MIT License.