File size: 5,693 Bytes
895e0e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
---
language:
- en
- id
- jv
- su
license: gemma
tags:
- merge
- mergekit
- autoquant
- gguf
base_model:
- GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct
- aisingapore/gemma2-9b-cpt-sea-lionv3-instruct
model-index:
- name: gemma2-9b-sahabatai-v1-instruct-BaseTIES
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 73.78
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gmonsoon/gemma2-9b-sahabatai-v1-instruct-BaseTIES
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 43.4
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gmonsoon/gemma2-9b-sahabatai-v1-instruct-BaseTIES
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 19.34
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gmonsoon/gemma2-9b-sahabatai-v1-instruct-BaseTIES
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 9.4
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gmonsoon/gemma2-9b-sahabatai-v1-instruct-BaseTIES
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 19.13
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gmonsoon/gemma2-9b-sahabatai-v1-instruct-BaseTIES
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 37.19
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gmonsoon/gemma2-9b-sahabatai-v1-instruct-BaseTIES
name: Open LLM Leaderboard
---
# SahabatAI-Lion-9B-TIES-v1
formerly gemma2-9b-cpt-sahabatai-v1-instruct-BaseTIES (model name too long :D )
![image/png](https://cdn-uploads.huggingface.co/production/uploads/642b04e4ecec03b44649e318/rJ0ogty-DbLUEH48Ms5lE.png)
Based on some research, when a finetuned model is merged with its base model with TIES method, there is possibility the merged model will achieve better output.
**UPDATE!!! as 20 November 2024, this model is third best model (number one for Gemma2-9B based model) on HF's Open LLM Leaderboard (with Merge/MoErges hide model unchecked) for LLM model below 10B parameters.**
![image/png](https://cdn-uploads.huggingface.co/production/uploads/642b04e4ecec03b44649e318/8Hv3YtWtzzFlJ0_kUpsT7.png)
gmonsoon/SahabatAI-Lion-9B-TIES-v1 is a merge of the following models:
* [GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct](https://huggingface.co/GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct)
* [aisingapore/gemma2-9b-cpt-sea-lionv3-instruct](https://huggingface.co/aisingapore/gemma2-9b-cpt-sea-lionv3-instruct)
DEMO Spaces: [HERE](https://huggingface.co/spaces/gmonsoon/SahabatAI-Lion-9B-TIES-v1)
## 🧩 Configuration
```yaml
models:
- model: GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct
parameters:
weight: 1
density: 1
- model: GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct
parameters:
weight: 1
density: 1
merge_method: ties
base_model: aisingapore/gemma2-9b-cpt-sea-lionv3-instruct
parameters:
density: 1
normalize: true
int8_mask: true
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "gmonsoon/SahabatAI-Lion-9B-TIES-v1"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_gmonsoon__gemma2-9b-sahabatai-v1-instruct-BaseTIES)
| Metric |Value|
|-------------------|----:|
|Avg. |33.70|
|IFEval (0-Shot) |73.78|
|BBH (3-Shot) |43.40|
|MATH Lvl 5 (4-Shot)|19.34|
|GPQA (0-shot) | 9.40|
|MuSR (0-shot) |19.13|
|MMLU-PRO (5-shot) |37.19|
|