Edit model card

Korean News Summarization Model

Demo

https://huggingface.co/spaces/gogamza/kobart-summarization

How to use

import torch
from transformers import PreTrainedTokenizerFast
from transformers import BartForConditionalGeneration

tokenizer = PreTrainedTokenizerFast.from_pretrained('gogamza/kobart-summarization')
model = BartForConditionalGeneration.from_pretrained('gogamza/kobart-summarization')

text = "๊ณผ๊ฑฐ๋ฅผ ๋– ์˜ฌ๋ ค๋ณด์ž. ๋ฐฉ์†ก์„ ๋ณด๋˜ ์šฐ๋ฆฌ์˜ ๋ชจ์Šต์„. ๋…๋ณด์ ์ธ ๋งค์ฒด๋Š” TV์˜€๋‹ค. ์˜จ ๊ฐ€์กฑ์ด ๋‘˜๋Ÿฌ์•‰์•„ TV๋ฅผ ๋ดค๋‹ค. ๊ฐ„ํ˜น ๊ฐ€์กฑ๋“ค๋ผ๋ฆฌ ๋‰ด์Šค์™€ ๋“œ๋ผ๋งˆ, ์˜ˆ๋Šฅ ํ”„๋กœ๊ทธ๋žจ์„ ๋‘˜๋Ÿฌ์‹ธ๊ณ  ๋ฆฌ๋ชจ์ปจ ์Ÿํƒˆ์ „์ด ๋ฒŒ์–ด์ง€๊ธฐ๋„  ํ–ˆ๋‹ค. ๊ฐ์ž ์„ ํ˜ธํ•˜๋Š” ํ”„๋กœ๊ทธ๋žจ์„ โ€˜๋ณธ๋ฐฉโ€™์œผ๋กœ ๋ณด๊ธฐ ์œ„ํ•œ ์‹ธ์›€์ด์—ˆ๋‹ค. TV๊ฐ€ ํ•œ ๋Œ€์ธ์ง€ ๋‘ ๋Œ€์ธ์ง€ ์—ฌ๋ถ€๋„ ๊ทธ๋ž˜์„œ ์ค‘์š”ํ–ˆ๋‹ค. ์ง€๊ธˆ์€ ์–ด๋–ค๊ฐ€. โ€˜์•ˆ๋ฐฉ๊ทน์žฅโ€™์ด๋ผ๋Š” ๋ง์€ ์˜›๋ง์ด ๋๋‹ค. TV๊ฐ€ ์—†๋Š” ์ง‘๋„ ๋งŽ๋‹ค. ๋ฏธ๋””์–ด์˜ ํ˜œ ํƒ์„ ๋ˆ„๋ฆด ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์€ ๋Š˜์–ด๋‚ฌ๋‹ค. ๊ฐ์ž์˜ ๋ฐฉ์—์„œ ๊ฐ์ž์˜ ํœด๋Œ€ํฐ์œผ๋กœ, ๋…ธํŠธ๋ถ์œผ๋กœ, ํƒœ๋ธ”๋ฆฟ์œผ๋กœ ์ฝ˜ํ…์ธ  ๋ฅผ ์ฆ๊ธด๋‹ค."

raw_input_ids = tokenizer.encode(text)
input_ids = [tokenizer.bos_token_id] + raw_input_ids + [tokenizer.eos_token_id]

summary_ids = model.generate(torch.tensor([input_ids]))
tokenizer.decode(summary_ids.squeeze().tolist(), skip_special_tokens=True)
Downloads last month
20,875
Safetensors
Model size
124M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gogamza/kobart-summarization

Finetunes
3 models

Spaces using gogamza/kobart-summarization 4