--- license: mit base_model: dbmdz/bert-base-turkish-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: BERTurk_hate_span_all results: [] --- # BERTurk_hate_span_all This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1292 - Precision: 0.6325 - Recall: 0.5175 - F1: 0.5692 - Accuracy: 0.9700 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1724 | 1.0 | 230 | 0.1273 | 0.2477 | 0.4907 | 0.3292 | 0.9597 | | 0.1228 | 2.0 | 460 | 0.1410 | 0.3866 | 0.4259 | 0.4053 | 0.9684 | | 0.0564 | 3.0 | 690 | 0.1094 | 0.3955 | 0.4907 | 0.4380 | 0.9719 | | 0.0414 | 4.0 | 920 | 0.1226 | 0.5192 | 0.5 | 0.5094 | 0.9739 | | 0.0165 | 5.0 | 1150 | 0.1548 | 0.4359 | 0.4722 | 0.4533 | 0.9713 | | 0.0069 | 6.0 | 1380 | 0.1959 | 0.5604 | 0.4722 | 0.5126 | 0.9749 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1