--- library_name: transformers language: - en license: apache-2.0 base_model: google/bert_uncased_L-4_H-256_A-4 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation - accuracy model-index: - name: bert_uncased_L-4_H-256_A-4_cola results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.2650812590803394 - name: Accuracy type: accuracy value: 0.7027804255485535 --- # bert_uncased_L-4_H-256_A-4_cola This model is a fine-tuned version of [google/bert_uncased_L-4_H-256_A-4](https://huggingface.co/google/bert_uncased_L-4_H-256_A-4) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.5943 - Matthews Correlation: 0.2651 - Accuracy: 0.7028 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------------------:|:--------:| | 0.6358 | 1.0 | 34 | 0.6182 | 0.0 | 0.6913 | | 0.6077 | 2.0 | 68 | 0.6184 | 0.0 | 0.6913 | | 0.5982 | 3.0 | 102 | 0.6035 | 0.0 | 0.6913 | | 0.575 | 4.0 | 136 | 0.5997 | 0.1458 | 0.7009 | | 0.5391 | 5.0 | 170 | 0.5992 | 0.2018 | 0.7028 | | 0.4999 | 6.0 | 204 | 0.6159 | 0.2088 | 0.7085 | | 0.4722 | 7.0 | 238 | 0.5974 | 0.2782 | 0.7248 | | 0.4437 | 8.0 | 272 | 0.5943 | 0.2651 | 0.7028 | | 0.4204 | 9.0 | 306 | 0.6239 | 0.2618 | 0.7210 | | 0.3956 | 10.0 | 340 | 0.6360 | 0.2655 | 0.7191 | | 0.3671 | 11.0 | 374 | 0.6876 | 0.2592 | 0.7200 | | 0.3546 | 12.0 | 408 | 0.7041 | 0.2665 | 0.7239 | | 0.333 | 13.0 | 442 | 0.6849 | 0.2891 | 0.7229 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3