--- library_name: transformers language: - en license: apache-2.0 base_model: google/bert_uncased_L-4_H-256_A-4 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: bert_uncased_L-4_H-256_A-4_mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.7720588235294118 - name: F1 type: f1 value: 0.8393782383419689 --- # bert_uncased_L-4_H-256_A-4_mrpc This model is a fine-tuned version of [google/bert_uncased_L-4_H-256_A-4](https://huggingface.co/google/bert_uncased_L-4_H-256_A-4) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.5071 - Accuracy: 0.7721 - F1: 0.8394 - Combined Score: 0.8057 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.6375 | 1.0 | 15 | 0.6024 | 0.6936 | 0.8170 | 0.7553 | | 0.594 | 2.0 | 30 | 0.5776 | 0.6985 | 0.8167 | 0.7576 | | 0.5504 | 3.0 | 45 | 0.5475 | 0.7279 | 0.8274 | 0.7777 | | 0.5155 | 4.0 | 60 | 0.5083 | 0.7598 | 0.8345 | 0.7971 | | 0.4668 | 5.0 | 75 | 0.5116 | 0.7598 | 0.8345 | 0.7971 | | 0.4292 | 6.0 | 90 | 0.5237 | 0.7696 | 0.8433 | 0.8065 | | 0.3859 | 7.0 | 105 | 0.5071 | 0.7721 | 0.8394 | 0.8057 | | 0.3455 | 8.0 | 120 | 0.5300 | 0.7721 | 0.8426 | 0.8073 | | 0.3049 | 9.0 | 135 | 0.5408 | 0.7721 | 0.8410 | 0.8065 | | 0.2735 | 10.0 | 150 | 0.5337 | 0.7745 | 0.8425 | 0.8085 | | 0.2454 | 11.0 | 165 | 0.5962 | 0.7647 | 0.84 | 0.8024 | | 0.2117 | 12.0 | 180 | 0.5756 | 0.7794 | 0.8469 | 0.8132 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3