File size: 2,683 Bytes
3771e99
 
8096661
 
3771e99
 
 
 
8096661
 
3771e99
 
 
 
 
8096661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3771e99
 
 
 
 
 
 
8096661
3771e99
8096661
 
 
 
3771e99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
library_name: transformers
language:
- en
license: apache-2.0
base_model: google/bert_uncased_L-4_H-256_A-4
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: bert_uncased_L-4_H-256_A-4_qqp
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: GLUE QQP
      type: glue
      args: qqp
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8774672273064557
    - name: F1
      type: f1
      value: 0.8326577489528443
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert_uncased_L-4_H-256_A-4_qqp

This model is a fine-tuned version of [google/bert_uncased_L-4_H-256_A-4](https://huggingface.co/google/bert_uncased_L-4_H-256_A-4) on the GLUE QQP dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2840
- Accuracy: 0.8775
- F1: 0.8327
- Combined Score: 0.8551

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy | F1     | Combined Score |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:|
| 0.3985        | 1.0   | 1422  | 0.3341          | 0.8486   | 0.7966 | 0.8226         |
| 0.3199        | 2.0   | 2844  | 0.3058          | 0.8636   | 0.8245 | 0.8440         |
| 0.2819        | 3.0   | 4266  | 0.2883          | 0.8732   | 0.8341 | 0.8536         |
| 0.2525        | 4.0   | 5688  | 0.2840          | 0.8775   | 0.8327 | 0.8551         |
| 0.2304        | 5.0   | 7110  | 0.2858          | 0.8808   | 0.8448 | 0.8628         |
| 0.2094        | 6.0   | 8532  | 0.2877          | 0.8817   | 0.8450 | 0.8633         |
| 0.1912        | 7.0   | 9954  | 0.2909          | 0.8823   | 0.8462 | 0.8642         |
| 0.1749        | 8.0   | 11376 | 0.2944          | 0.8856   | 0.8512 | 0.8684         |
| 0.1604        | 9.0   | 12798 | 0.3125          | 0.8863   | 0.8526 | 0.8694         |


### Framework versions

- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3