--- library_name: transformers language: - en license: apache-2.0 base_model: google/bert_uncased_L-4_H-256_A-4 tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: bert_uncased_L-4_H-256_A-4_stsb results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.8541619713648296 --- # bert_uncased_L-4_H-256_A-4_stsb This model is a fine-tuned version of [google/bert_uncased_L-4_H-256_A-4](https://huggingface.co/google/bert_uncased_L-4_H-256_A-4) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 0.6283 - Pearson: 0.8545 - Spearmanr: 0.8542 - Combined Score: 0.8543 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 5.5773 | 1.0 | 23 | 2.7412 | 0.3845 | 0.3343 | 0.3594 | | 2.5793 | 2.0 | 46 | 1.9158 | 0.7727 | 0.7557 | 0.7642 | | 1.5767 | 3.0 | 69 | 0.9541 | 0.7706 | 0.7473 | 0.7590 | | 0.9474 | 4.0 | 92 | 0.7628 | 0.8133 | 0.8070 | 0.8101 | | 0.7258 | 5.0 | 115 | 0.6785 | 0.8383 | 0.8429 | 0.8406 | | 0.6162 | 6.0 | 138 | 0.6756 | 0.8436 | 0.8439 | 0.8437 | | 0.5455 | 7.0 | 161 | 0.6391 | 0.8480 | 0.8504 | 0.8492 | | 0.4912 | 8.0 | 184 | 0.6582 | 0.8461 | 0.8472 | 0.8466 | | 0.4443 | 9.0 | 207 | 0.6561 | 0.8472 | 0.8482 | 0.8477 | | 0.3995 | 10.0 | 230 | 0.6429 | 0.8504 | 0.8503 | 0.8503 | | 0.3689 | 11.0 | 253 | 0.6283 | 0.8545 | 0.8542 | 0.8543 | | 0.3418 | 12.0 | 276 | 0.6592 | 0.8520 | 0.8520 | 0.8520 | | 0.3302 | 13.0 | 299 | 0.6507 | 0.8524 | 0.8530 | 0.8527 | | 0.319 | 14.0 | 322 | 0.6484 | 0.8528 | 0.8526 | 0.8527 | | 0.2863 | 15.0 | 345 | 0.6397 | 0.8526 | 0.8527 | 0.8526 | | 0.2774 | 16.0 | 368 | 0.6379 | 0.8559 | 0.8555 | 0.8557 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3