--- library_name: transformers language: - en license: apache-2.0 base_model: google/bert_uncased_L-4_H-256_A-4 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert_uncased_L-4_H-256_A-4_wnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue args: wnli metrics: - name: Accuracy type: accuracy value: 0.39436619718309857 --- # bert_uncased_L-4_H-256_A-4_wnli This model is a fine-tuned version of [google/bert_uncased_L-4_H-256_A-4](https://huggingface.co/google/bert_uncased_L-4_H-256_A-4) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.7014 - Accuracy: 0.3944 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7023 | 1.0 | 3 | 0.7059 | 0.4366 | | 0.6973 | 2.0 | 6 | 0.7022 | 0.4225 | | 0.6895 | 3.0 | 9 | 0.7014 | 0.3944 | | 0.6895 | 4.0 | 12 | 0.7031 | 0.4225 | | 0.6974 | 5.0 | 15 | 0.7065 | 0.4085 | | 0.6872 | 6.0 | 18 | 0.7115 | 0.3803 | | 0.6909 | 7.0 | 21 | 0.7146 | 0.3662 | | 0.7003 | 8.0 | 24 | 0.7159 | 0.3944 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3