gonchisi commited on
Commit
d05e7cf
1 Parent(s): d2628a2

End of training

Browse files
Files changed (1) hide show
  1. README.md +6 -6
README.md CHANGED
@@ -6,19 +6,19 @@ tags:
6
  metrics:
7
  - accuracy
8
  model-index:
9
- - name: roberta-base-bne-finetuned-new_or_used_warranty-gpu
10
  results: []
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
  should probably proofread and complete it, then remove this comment. -->
15
 
16
- # roberta-base-bne-finetuned-new_or_used_warranty-gpu
17
 
18
  This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the None dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 0.5682
21
- - Accuracy: 0.6360
22
 
23
  ## Model description
24
 
@@ -49,8 +49,8 @@ The following hyperparameters were used during training:
49
 
50
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
  |:-------------:|:-----:|:-----:|:---------------:|:--------:|
52
- | 0.5783 | 1.0 | 5000 | 0.5747 | 0.6327 |
53
- | 0.5577 | 2.0 | 10000 | 0.5682 | 0.6360 |
54
 
55
 
56
  ### Framework versions
 
6
  metrics:
7
  - accuracy
8
  model-index:
9
+ - name: roberta-base-bne-finetuned-new_or_used_title-gpu
10
  results: []
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
  should probably proofread and complete it, then remove this comment. -->
15
 
16
+ # roberta-base-bne-finetuned-new_or_used_title-gpu
17
 
18
  This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the None dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 0.4096
21
+ - Accuracy: 0.8476
22
 
23
  ## Model description
24
 
 
49
 
50
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
  |:-------------:|:-----:|:-----:|:---------------:|:--------:|
52
+ | 0.3803 | 1.0 | 5000 | 0.3575 | 0.8442 |
53
+ | 0.2344 | 2.0 | 10000 | 0.4096 | 0.8476 |
54
 
55
 
56
  ### Framework versions