lewtun HF staff commited on
Commit
bf242ac
1 Parent(s): 686f1db

Add evaluation results on samsum dataset

Browse files

Beep boop, I am a bot from Hugging Face's automatic model evaluator 👋!\
Your model has been evaluated on the [samsum](https://huggingface.co/datasets/samsum) dataset by

@sunilmallya

, using the predictions stored [here](https://huggingface.co/datasets/autoevaluate/autoeval-staging-eval-project-samsum-43d00dce-10075336).\
Accept this pull request to see the results displayed on the [Hub leaderboard](https://huggingface.co/spaces/autoevaluate/leaderboards?dataset=samsum).\
Evaluate your model on more datasets [here](https://huggingface.co/spaces/autoevaluate/model-evaluator?dataset=samsum).

Files changed (1) hide show
  1. README.md +37 -2
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- language:
3
  - en
4
  - fr
5
  - ro
@@ -9,8 +9,43 @@ datasets:
9
  tags:
10
  - summarization
11
  - translation
12
-
13
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  ---
15
 
16
  [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html)
 
1
  ---
2
+ language:
3
  - en
4
  - fr
5
  - ro
 
9
  tags:
10
  - summarization
11
  - translation
 
12
  license: apache-2.0
13
+ model-index:
14
+ - name: t5-base
15
+ results:
16
+ - task:
17
+ type: summarization
18
+ name: Summarization
19
+ dataset:
20
+ name: samsum
21
+ type: samsum
22
+ config: samsum
23
+ split: test
24
+ metrics:
25
+ - name: ROUGE-1
26
+ type: rouge
27
+ value: 22.6948
28
+ verified: true
29
+ - name: ROUGE-2
30
+ type: rouge
31
+ value: 6.5849
32
+ verified: true
33
+ - name: ROUGE-L
34
+ type: rouge
35
+ value: 19.1904
36
+ verified: true
37
+ - name: ROUGE-LSUM
38
+ type: rouge
39
+ value: 20.833
40
+ verified: true
41
+ - name: loss
42
+ type: loss
43
+ value: 2.4283266067504883
44
+ verified: true
45
+ - name: gen_len
46
+ type: gen_len
47
+ value: 18.3211
48
+ verified: true
49
  ---
50
 
51
  [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html)