Update README.md
Browse files
README.md
CHANGED
@@ -50,18 +50,16 @@ outputs = model(**inputs)
|
|
50 |
# Target image sizes (height, width) to rescale box predictions [batch_size, 2]
|
51 |
target_sizes = torch.Tensor([image.size[::-1]])
|
52 |
# Convert outputs (bounding boxes and class logits) to COCO API
|
53 |
-
results = processor.post_process_object_detection(outputs=outputs, target_sizes=target_sizes)
|
54 |
|
55 |
i = 0 # Retrieve predictions for the first image for the corresponding text queries
|
56 |
text = texts[i]
|
57 |
boxes, scores, labels = results[i]["boxes"], results[i]["scores"], results[i]["labels"]
|
58 |
|
59 |
# Print detected objects and rescaled box coordinates
|
60 |
-
score_threshold = 0.1
|
61 |
for box, score, label in zip(boxes, scores, labels):
|
62 |
box = [round(i, 2) for i in box.tolist()]
|
63 |
-
|
64 |
-
print(f"Detected {text[label]} with confidence {round(score.item(), 3)} at location {box}")
|
65 |
```
|
66 |
|
67 |
|
|
|
50 |
# Target image sizes (height, width) to rescale box predictions [batch_size, 2]
|
51 |
target_sizes = torch.Tensor([image.size[::-1]])
|
52 |
# Convert outputs (bounding boxes and class logits) to COCO API
|
53 |
+
results = processor.post_process_object_detection(outputs=outputs, threshold=0.1, target_sizes=target_sizes)
|
54 |
|
55 |
i = 0 # Retrieve predictions for the first image for the corresponding text queries
|
56 |
text = texts[i]
|
57 |
boxes, scores, labels = results[i]["boxes"], results[i]["scores"], results[i]["labels"]
|
58 |
|
59 |
# Print detected objects and rescaled box coordinates
|
|
|
60 |
for box, score, label in zip(boxes, scores, labels):
|
61 |
box = [round(i, 2) for i in box.tolist()]
|
62 |
+
print(f"Detected {text[label]} with confidence {round(score.item(), 3)} at location {box}")
|
|
|
63 |
```
|
64 |
|
65 |
|