ArthurZ HF staff commited on
Commit
66cb9e7
1 Parent(s): 47c7135

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +130 -0
README.md ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - multilingual
4
+ - af
5
+ - am
6
+ - ar
7
+ - az
8
+ - be
9
+ - bg
10
+ - bn
11
+ - ca
12
+ - ceb
13
+ - co
14
+ - cs
15
+ - cy
16
+ - da
17
+ - de
18
+ - el
19
+ - en
20
+ - eo
21
+ - es
22
+ - et
23
+ - eu
24
+ - fa
25
+ - fi
26
+ - fil
27
+ - fr
28
+ - fy
29
+ - ga
30
+ - gd
31
+ - gl
32
+ - gu
33
+ - ha
34
+ - haw
35
+ - hi
36
+ - hmn
37
+ - ht
38
+ - hu
39
+ - hy
40
+ - ig
41
+ - is
42
+ - it
43
+ - iw
44
+ - ja
45
+ - jv
46
+ - ka
47
+ - kk
48
+ - km
49
+ - kn
50
+ - ko
51
+ - ku
52
+ - ky
53
+ - la
54
+ - lb
55
+ - lo
56
+ - lt
57
+ - lv
58
+ - mg
59
+ - mi
60
+ - mk
61
+ - ml
62
+ - mn
63
+ - mr
64
+ - ms
65
+ - mt
66
+ - my
67
+ - ne
68
+ - nl
69
+ - no
70
+ - ny
71
+ - pa
72
+ - pl
73
+ - ps
74
+ - pt
75
+ - ro
76
+ - ru
77
+ - sd
78
+ - si
79
+ - sk
80
+ - sl
81
+ - sm
82
+ - sn
83
+ - so
84
+ - sq
85
+ - sr
86
+ - st
87
+ - su
88
+ - sv
89
+ - sw
90
+ - ta
91
+ - te
92
+ - tg
93
+ - th
94
+ - tr
95
+ - uk
96
+ - und
97
+ - ur
98
+ - uz
99
+ - vi
100
+ - xh
101
+ - yi
102
+ - yo
103
+ - zh
104
+ - zu
105
+ datasets:
106
+ - mc4
107
+
108
+ license: apache-2.0
109
+ ---
110
+
111
+ [Google's UMT5](https://github.com/google-research/multilingual-t5)
112
+
113
+ UMT5 is pretrained on the an updated version of [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) corpus, covering 107 languages:
114
+
115
+ Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bulgarian, Burmese, Catalan, Cebuano, Chichewa, Chinese, Corsican, Czech, Danish, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kurdish, Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Nepali, Norwegian, Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scottish Gaelic, Serbian, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Sotho, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Telugu, Thai, Turkish, Ukrainian, Urdu, Uzbek, Vietnamese, Welsh, West Frisian, Xhosa, Yiddish, Yoruba, Zulu.
116
+
117
+ **Note**: UMT5 was only pre-trained on mC4 excluding any supervised training. Therefore, this model has to be fine-tuned before it is useable on a downstream task.
118
+
119
+ Pretraining Dataset: [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual)
120
+
121
+ Other Community Checkpoints: [here](https://huggingface.co/models?search=umt5)
122
+
123
+ Paper: [UniMax, Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi)
124
+
125
+ Authors: *by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant*
126
+
127
+
128
+ ## Abstract
129
+
130
+ *Pretrained multilingual large language models have typically used heuristic temperature-based sampling to balance between different languages. However previous work has not systematically evaluated the efficacy of different pretraining language distributions across model scales. In this paper, we propose a new sampling method, UniMax, that delivers more uniform coverage of head languages while mitigating overfitting on tail languages by explicitly capping the number of repeats over each language's corpus. We perform an extensive series of ablations testing a range of sampling strategies on a suite of multilingual benchmarks, while varying model scale. We find that UniMax outperforms standard temperature-based sampling, and the benefits persist as scale increases. As part of our contribution, we release: (i) an improved and refreshed mC4 multilingual corpus consisting of 29 trillion characters across 107 languages, and (ii) a suite of pretrained umT5 model checkpoints trained with UniMax sampling.*