--- license: apache-2.0 base_model: albert/albert-base-v2 tags: - generated_from_trainer model-index: - name: output results: [] --- # output This model is a fine-tuned version of [albert/albert-base-v2](https://huggingface.co/albert/albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3331 - Memory Allocated (gb): 5.75 - Max Memory Allocated (gb): 10.76 - Total Memory Available (gb): 94.62 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 - lr_scheduler_type: reduce_lr_on_plateau - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Allocated (gb) | Memory Allocated (gb) | Memory Available (gb) | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:---------------------:|:---------------------:| | No log | 1.0 | 391 | 0.2682 | 5.75 | 10.76 | 94.62 | | No log | 2.0 | 782 | 0.2636 | 5.75 | 10.76 | 94.62 | | No log | 3.0 | 1173 | 0.2861 | 5.75 | 10.76 | 94.62 | | 0.2178 | 4.0 | 1564 | 0.3331 | 5.75 | 10.76 | 94.62 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.2a0+gitb5d0b9b - Datasets 2.19.1 - Tokenizers 0.19.1