gr22dy commited on
Commit
69e910e
1 Parent(s): b344f89

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.56 +/- 1.12
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e59755b85a885d028d3c91e3b57ab2497d092404c7204cb77a1b32918fd7ee64
3
+ size 108058
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fdd0fda94c0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7fdd0fda79c0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1682570362626671243,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "lr_schedule": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
33
+ },
34
+ "_last_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAK8rPPt4gHrscmgk/K8rPPt4gHrscmgk/K8rPPt4gHrscmgk/K8rPPt4gHrscmgk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+4S+v31Xvr+lzcy/djQVvzsERD6TVlG/Hh7ZvlKS+74Vppw+yr6kv9ZXU7wsI0U/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAArys8+3iAeuxyaCT/Hn3c8sCeDOnMuaLsrys8+3iAeuxyaCT/Hn3c8sCeDOnMuaLsrys8+3iAeuxyaCT/Hn3c8sCeDOnMuaLsrys8+3iAeuxyaCT/Hn3c8sCeDOnMuaLuUaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[ 0.4058393 -0.00241285 0.5375078 ]\n [ 0.4058393 -0.00241285 0.5375078 ]\n [ 0.4058393 -0.00241285 0.5375078 ]\n [ 0.4058393 -0.00241285 0.5375078 ]]",
38
+ "desired_goal": "[[-1.4884332 -1.4870449 -1.6000258 ]\n [-0.58283174 0.19142239 -0.81772727]\n [-0.4240579 -0.4913507 0.3059546 ]\n [-1.2870724 -0.01289936 0.77006793]]",
39
+ "observation": "[[ 0.4058393 -0.00241285 0.5375078 0.01511378 0.00100063 -0.00354281]\n [ 0.4058393 -0.00241285 0.5375078 0.01511378 0.00100063 -0.00354281]\n [ 0.4058393 -0.00241285 0.5375078 0.01511378 0.00100063 -0.00354281]\n [ 0.4058393 -0.00241285 0.5375078 0.01511378 0.00100063 -0.00354281]]"
40
+ },
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA0GeCO0OCxjwv8Qo+auIHvaPHxT1p7Ho+jtE9vejDBr6mIlg+yozTPRos2r0WV6Q8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[ 0.00397966 0.02423204 0.13568567]\n [-0.03317491 0.09657218 0.24504246]\n [-0.04634243 -0.1316067 0.21106967]\n [ 0.10329588 -0.10652943 0.02006106]]",
50
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
+ },
52
+ "_episode_num": 0,
53
+ "use_sde": false,
54
+ "sde_sample_freq": -1,
55
+ "_current_progress_remaining": 0.0,
56
+ "_stats_window_size": 100,
57
+ "ep_info_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImSmtvyWgBMCUhpRSlIwBbJRLMowBdJRHQKbsESKWLP51fZQoaAZoCWgPQwhkzjP2JTsMwJSGlFKUaBVLMmgWR0Cm69OXeFcqdX2UKGgGaAloD0MIIvq19dPfCcCUhpRSlGgVSzJoFkdApuuWRYA80XV9lChoBmgJaA9DCKosCrsoGgbAlIaUUpRoFUsyaBZHQKbrVy9VWCF1fZQoaAZoCWgPQwhcyvli76UQwJSGlFKUaBVLMmgWR0Cm7bu+h4+sdX2UKGgGaAloD0MIOZuOAG6WD8CUhpRSlGgVSzJoFkdApu1963RXwXV9lChoBmgJaA9DCETEzalkIBHAlIaUUpRoFUsyaBZHQKbtQVpKzzF1fZQoaAZoCWgPQwi1+X/VkeMHwJSGlFKUaBVLMmgWR0Cm7QMhouf3dX2UKGgGaAloD0MIOL9hokG6GMCUhpRSlGgVSzJoFkdApu+B2W6bv3V9lChoBmgJaA9DCOdR8X9HlAfAlIaUUpRoFUsyaBZHQKbvQ81XNkh1fZQoaAZoCWgPQwh7vJAODyH4v5SGlFKUaBVLMmgWR0Cm7wcVHnU2dX2UKGgGaAloD0MIQnv18dC3CcCUhpRSlGgVSzJoFkdApu7I3Ns3ynV9lChoBmgJaA9DCBL5LqUu2f6/lIaUUpRoFUsyaBZHQKbxKnxaxHJ1fZQoaAZoCWgPQwjoZn+g3FYPwJSGlFKUaBVLMmgWR0Cm8OyOJcgRdX2UKGgGaAloD0MIlWHcDaJVDMCUhpRSlGgVSzJoFkdApvCvseGO/HV9lChoBmgJaA9DCPUwtDo5g/O/lIaUUpRoFUsyaBZHQKbwcX531SR1fZQoaAZoCWgPQwhoWIy61l77v5SGlFKUaBVLMmgWR0Cm8uO5J9RadX2UKGgGaAloD0MI9+gN95FbCMCUhpRSlGgVSzJoFkdApvKl9lVcU3V9lChoBmgJaA9DCPyPTIdOD/+/lIaUUpRoFUsyaBZHQKbyaXOW0JF1fZQoaAZoCWgPQwjWOQZkr3f0v5SGlFKUaBVLMmgWR0Cm8isVk+X7dX2UKGgGaAloD0MIRKhSswea9b+UhpRSlGgVSzJoFkdApvQnZyuIRHV9lChoBmgJaA9DCLPPY5RnXv6/lIaUUpRoFUsyaBZHQKbz6OQQtjF1fZQoaAZoCWgPQwhwYd14dyT4v5SGlFKUaBVLMmgWR0Cm86tXxOLzdX2UKGgGaAloD0MI4stEEVIXDcCUhpRSlGgVSzJoFkdApvNsGFBY3nV9lChoBmgJaA9DCEpenWNAVgbAlIaUUpRoFUsyaBZHQKb1LZg5R0l1fZQoaAZoCWgPQwgtCyb+KMoJwJSGlFKUaBVLMmgWR0Cm9O9RaX8gdX2UKGgGaAloD0MIxqNUwhOaBcCUhpRSlGgVSzJoFkdApvSxz3h4uHV9lChoBmgJaA9DCIjYYOEkjRHAlIaUUpRoFUsyaBZHQKb0cnk1dgR1fZQoaAZoCWgPQwg3bcZpiBoSwJSGlFKUaBVLMmgWR0Cm9j6OHWSVdX2UKGgGaAloD0MILXsS2JxDA8CUhpRSlGgVSzJoFkdApvYAPNFBp3V9lChoBmgJaA9DCAPN59ztmgPAlIaUUpRoFUsyaBZHQKb1wqQzUI91fZQoaAZoCWgPQwghrpy9MyoUwJSGlFKUaBVLMmgWR0Cm9YNU4rBkdX2UKGgGaAloD0MI1xh0Qugg6L+UhpRSlGgVSzJoFkdApvdUNx2jf3V9lChoBmgJaA9DCPuxSX7E7w7AlIaUUpRoFUsyaBZHQKb3FdLQHA11fZQoaAZoCWgPQwgu4jsx6yUDwJSGlFKUaBVLMmgWR0Cm9thFVktmdX2UKGgGaAloD0MIgnAFFOop/7+UhpRSlGgVSzJoFkdApvaY5ksjFHV9lChoBmgJaA9DCFTle0YiNAPAlIaUUpRoFUsyaBZHQKb4ZQmeDnN1fZQoaAZoCWgPQwi94qlHGvwDwJSGlFKUaBVLMmgWR0Cm+CaqCHymdX2UKGgGaAloD0MIGcbdIFqr47+UhpRSlGgVSzJoFkdApvfpKaoddXV9lChoBmgJaA9DCE/qy9JObQXAlIaUUpRoFUsyaBZHQKb3qhV2icp1fZQoaAZoCWgPQwinBwWlaGUDwJSGlFKUaBVLMmgWR0Cm+XRCpm29dX2UKGgGaAloD0MIb4Jvmj47BcCUhpRSlGgVSzJoFkdApvk17Uoa1nV9lChoBmgJaA9DCB+7C5QUWAjAlIaUUpRoFUsyaBZHQKb4+FY+0PZ1fZQoaAZoCWgPQwgD6WLTSkEPwJSGlFKUaBVLMmgWR0Cm+LkPDpC8dX2UKGgGaAloD0MIK1CLwcPEFMCUhpRSlGgVSzJoFkdApvskIToMa3V9lChoBmgJaA9DCMWNW8zPTfG/lIaUUpRoFUsyaBZHQKb65tZV4ot1fZQoaAZoCWgPQwheglMfSH4RwJSGlFKUaBVLMmgWR0Cm+qpOerdWdX2UKGgGaAloD0MIPPVIg9va+L+UhpRSlGgVSzJoFkdApvpr8Lron3V9lChoBmgJaA9DCEmD29rCMwbAlIaUUpRoFUsyaBZHQKb8+tDlYEJ1fZQoaAZoCWgPQwhzf/W4b7X5v5SGlFKUaBVLMmgWR0Cm/L2ECeVcdX2UKGgGaAloD0MI6bXZWIn577+UhpRSlGgVSzJoFkdApvyBHAh0Q3V9lChoBmgJaA9DCERMiSR6mQjAlIaUUpRoFUsyaBZHQKb8QvVVghN1fZQoaAZoCWgPQwgcYVERpxP6v5SGlFKUaBVLMmgWR0Cm/s08eS0TdX2UKGgGaAloD0MIdnCwNzGEBcCUhpRSlGgVSzJoFkdApv6PuZ1FIHV9lChoBmgJaA9DCEIKnkKuNAnAlIaUUpRoFUsyaBZHQKb+UxJNCZ51fZQoaAZoCWgPQwj9wcBz76ENwJSGlFKUaBVLMmgWR0Cm/hS+g13udX2UKGgGaAloD0MIPWAeMuVDAcCUhpRSlGgVSzJoFkdApwCgrjHXE3V9lChoBmgJaA9DCLA6cqQzcA3AlIaUUpRoFUsyaBZHQKcAYxD9fkZ1fZQoaAZoCWgPQwgmipC6nd0OwJSGlFKUaBVLMmgWR0CnACZRjz7NdX2UKGgGaAloD0MI81gzMsj9BcCUhpRSlGgVSzJoFkdApv/ny3CsO3V9lChoBmgJaA9DCFHZsKayyAbAlIaUUpRoFUsyaBZHQKcCKC5mRNh1fZQoaAZoCWgPQwiyTL9EvDX2v5SGlFKUaBVLMmgWR0CnAenfEXLvdX2UKGgGaAloD0MIj1IJT+g1AsCUhpRSlGgVSzJoFkdApwGsT6BRRHV9lChoBmgJaA9DCD/EBgsnCQfAlIaUUpRoFUsyaBZHQKcBbOWSlnB1fZQoaAZoCWgPQwjP+SmOA88GwJSGlFKUaBVLMmgWR0CnAzrsSkCWdX2UKGgGaAloD0MIUMdjBirDC8CUhpRSlGgVSzJoFkdApwL8q6OHWXV9lChoBmgJaA9DCH4ZjBGJogTAlIaUUpRoFUsyaBZHQKcCvyNGViZ1fZQoaAZoCWgPQwgnFCLgEIoMwJSGlFKUaBVLMmgWR0CnAn/CZWq+dX2UKGgGaAloD0MI0c5pFmi3EMCUhpRSlGgVSzJoFkdApwRLkKeCkHV9lChoBmgJaA9DCEmERrBx/fq/lIaUUpRoFUsyaBZHQKcEDTUiILx1fZQoaAZoCWgPQwhnt5bJcLwUwJSGlFKUaBVLMmgWR0CnA8+uFHrhdX2UKGgGaAloD0MIWJBmLJp+E8CUhpRSlGgVSzJoFkdApwOQXhwVCXV9lChoBmgJaA9DCP89eO3S1hLAlIaUUpRoFUsyaBZHQKcFX2hZha11fZQoaAZoCWgPQwhzg6EOKxwBwJSGlFKUaBVLMmgWR0CnBSEaESM+dX2UKGgGaAloD0MIQRAgQ8cuA8CUhpRSlGgVSzJoFkdApwTjhYNiIHV9lChoBmgJaA9DCJqUgm4vyQPAlIaUUpRoFUsyaBZHQKcEpC3w1BN1fZQoaAZoCWgPQwgqxY7God4NwJSGlFKUaBVLMmgWR0CnBoRhttQ9dX2UKGgGaAloD0MIJQUWwJQBCcCUhpRSlGgVSzJoFkdApwZGKVII4XV9lChoBmgJaA9DCBlUG5yI/gHAlIaUUpRoFUsyaBZHQKcGCHoHLRt1fZQoaAZoCWgPQwg/cJUnEEYQwJSGlFKUaBVLMmgWR0CnBckona37dX2UKGgGaAloD0MI8DZvnBQmDMCUhpRSlGgVSzJoFkdApwfWGbkOqnV9lChoBmgJaA9DCKiMf59xoQTAlIaUUpRoFUsyaBZHQKcHmGbkOqh1fZQoaAZoCWgPQwioABjPoKEGwJSGlFKUaBVLMmgWR0CnB1z850bMdX2UKGgGaAloD0MILnJPV3cMB8CUhpRSlGgVSzJoFkdApwceVZ9uxnV9lChoBmgJaA9DCLwH6L6cKRbAlIaUUpRoFUsyaBZHQKcJl28qWkd1fZQoaAZoCWgPQwhZMsfyrpoHwJSGlFKUaBVLMmgWR0CnCVoDoyKvdX2UKGgGaAloD0MIINPaNLa3AcCUhpRSlGgVSzJoFkdApwkdinYQKHV9lChoBmgJaA9DCDJxqyAGugrAlIaUUpRoFUsyaBZHQKcI3xPwd811fZQoaAZoCWgPQwjdzVMdcvMIwJSGlFKUaBVLMmgWR0CnC3EGA09AdX2UKGgGaAloD0MIPwEUI0tmCsCUhpRSlGgVSzJoFkdApwsz6zmfXnV9lChoBmgJaA9DCHwpPGh23f+/lIaUUpRoFUsyaBZHQKcK97HAAQx1fZQoaAZoCWgPQwi7RPXWwNb2v5SGlFKUaBVLMmgWR0CnCrlq8DjjdX2UKGgGaAloD0MIkPmAQGeSC8CUhpRSlGgVSzJoFkdApw1URHww03V9lChoBmgJaA9DCNDwZg3etw3AlIaUUpRoFUsyaBZHQKcNFwfhddF1fZQoaAZoCWgPQwhJ88e0Nk3xv5SGlFKUaBVLMmgWR0CnDNpKraM8dX2UKGgGaAloD0MIoIfaNoxiCMCUhpRSlGgVSzJoFkdApwyb8m8dxXV9lChoBmgJaA9DCD3UtmEUxAXAlIaUUpRoFUsyaBZHQKcPNTP0I1N1fZQoaAZoCWgPQwhG7BNAMTL2v5SGlFKUaBVLMmgWR0CnDvgKWszVdX2UKGgGaAloD0MI/G66ZYe4EMCUhpRSlGgVSzJoFkdApw67nLaEjHV9lChoBmgJaA9DCNGuQspPSgLAlIaUUpRoFUsyaBZHQKcOfXHR1HR1ZS4="
60
+ },
61
+ "ep_success_buffer": {
62
+ ":type:": "<class 'collections.deque'>",
63
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
+ },
65
+ "_n_updates": 50000,
66
+ "n_steps": 5,
67
+ "gamma": 0.99,
68
+ "gae_lambda": 1.0,
69
+ "ent_coef": 0.0,
70
+ "vf_coef": 0.5,
71
+ "max_grad_norm": 0.5,
72
+ "normalize_advantage": false,
73
+ "observation_space": {
74
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
75
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
76
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
77
+ "_shape": null,
78
+ "dtype": null,
79
+ "_np_random": null
80
+ },
81
+ "action_space": {
82
+ ":type:": "<class 'gym.spaces.box.Box'>",
83
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
84
+ "dtype": "float32",
85
+ "_shape": [
86
+ 3
87
+ ],
88
+ "low": "[-1. -1. -1.]",
89
+ "high": "[1. 1. 1.]",
90
+ "bounded_below": "[ True True True]",
91
+ "bounded_above": "[ True True True]",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 4
95
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:821a78f5c310819662ae585c0a787fbcfd2c657eea47b9a7813a9e92ba1d3109
3
+ size 44734
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f0107d9c4ed55c4a213f6f120521bc847a6b12ed123dfd904b18eb435fcd4e4
3
+ size 46014
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fdd0fda94c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fdd0fda79c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682570362626671243, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAK8rPPt4gHrscmgk/K8rPPt4gHrscmgk/K8rPPt4gHrscmgk/K8rPPt4gHrscmgk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+4S+v31Xvr+lzcy/djQVvzsERD6TVlG/Hh7ZvlKS+74Vppw+yr6kv9ZXU7wsI0U/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAArys8+3iAeuxyaCT/Hn3c8sCeDOnMuaLsrys8+3iAeuxyaCT/Hn3c8sCeDOnMuaLsrys8+3iAeuxyaCT/Hn3c8sCeDOnMuaLsrys8+3iAeuxyaCT/Hn3c8sCeDOnMuaLuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4058393 -0.00241285 0.5375078 ]\n [ 0.4058393 -0.00241285 0.5375078 ]\n [ 0.4058393 -0.00241285 0.5375078 ]\n [ 0.4058393 -0.00241285 0.5375078 ]]", "desired_goal": "[[-1.4884332 -1.4870449 -1.6000258 ]\n [-0.58283174 0.19142239 -0.81772727]\n [-0.4240579 -0.4913507 0.3059546 ]\n [-1.2870724 -0.01289936 0.77006793]]", "observation": "[[ 0.4058393 -0.00241285 0.5375078 0.01511378 0.00100063 -0.00354281]\n [ 0.4058393 -0.00241285 0.5375078 0.01511378 0.00100063 -0.00354281]\n [ 0.4058393 -0.00241285 0.5375078 0.01511378 0.00100063 -0.00354281]\n [ 0.4058393 -0.00241285 0.5375078 0.01511378 0.00100063 -0.00354281]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA0GeCO0OCxjwv8Qo+auIHvaPHxT1p7Ho+jtE9vejDBr6mIlg+yozTPRos2r0WV6Q8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.00397966 0.02423204 0.13568567]\n [-0.03317491 0.09657218 0.24504246]\n [-0.04634243 -0.1316067 0.21106967]\n [ 0.10329588 -0.10652943 0.02006106]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImSmtvyWgBMCUhpRSlIwBbJRLMowBdJRHQKbsESKWLP51fZQoaAZoCWgPQwhkzjP2JTsMwJSGlFKUaBVLMmgWR0Cm69OXeFcqdX2UKGgGaAloD0MIIvq19dPfCcCUhpRSlGgVSzJoFkdApuuWRYA80XV9lChoBmgJaA9DCKosCrsoGgbAlIaUUpRoFUsyaBZHQKbrVy9VWCF1fZQoaAZoCWgPQwhcyvli76UQwJSGlFKUaBVLMmgWR0Cm7bu+h4+sdX2UKGgGaAloD0MIOZuOAG6WD8CUhpRSlGgVSzJoFkdApu1963RXwXV9lChoBmgJaA9DCETEzalkIBHAlIaUUpRoFUsyaBZHQKbtQVpKzzF1fZQoaAZoCWgPQwi1+X/VkeMHwJSGlFKUaBVLMmgWR0Cm7QMhouf3dX2UKGgGaAloD0MIOL9hokG6GMCUhpRSlGgVSzJoFkdApu+B2W6bv3V9lChoBmgJaA9DCOdR8X9HlAfAlIaUUpRoFUsyaBZHQKbvQ81XNkh1fZQoaAZoCWgPQwh7vJAODyH4v5SGlFKUaBVLMmgWR0Cm7wcVHnU2dX2UKGgGaAloD0MIQnv18dC3CcCUhpRSlGgVSzJoFkdApu7I3Ns3ynV9lChoBmgJaA9DCBL5LqUu2f6/lIaUUpRoFUsyaBZHQKbxKnxaxHJ1fZQoaAZoCWgPQwjoZn+g3FYPwJSGlFKUaBVLMmgWR0Cm8OyOJcgRdX2UKGgGaAloD0MIlWHcDaJVDMCUhpRSlGgVSzJoFkdApvCvseGO/HV9lChoBmgJaA9DCPUwtDo5g/O/lIaUUpRoFUsyaBZHQKbwcX531SR1fZQoaAZoCWgPQwhoWIy61l77v5SGlFKUaBVLMmgWR0Cm8uO5J9RadX2UKGgGaAloD0MI9+gN95FbCMCUhpRSlGgVSzJoFkdApvKl9lVcU3V9lChoBmgJaA9DCPyPTIdOD/+/lIaUUpRoFUsyaBZHQKbyaXOW0JF1fZQoaAZoCWgPQwjWOQZkr3f0v5SGlFKUaBVLMmgWR0Cm8isVk+X7dX2UKGgGaAloD0MIRKhSswea9b+UhpRSlGgVSzJoFkdApvQnZyuIRHV9lChoBmgJaA9DCLPPY5RnXv6/lIaUUpRoFUsyaBZHQKbz6OQQtjF1fZQoaAZoCWgPQwhwYd14dyT4v5SGlFKUaBVLMmgWR0Cm86tXxOLzdX2UKGgGaAloD0MI4stEEVIXDcCUhpRSlGgVSzJoFkdApvNsGFBY3nV9lChoBmgJaA9DCEpenWNAVgbAlIaUUpRoFUsyaBZHQKb1LZg5R0l1fZQoaAZoCWgPQwgtCyb+KMoJwJSGlFKUaBVLMmgWR0Cm9O9RaX8gdX2UKGgGaAloD0MIxqNUwhOaBcCUhpRSlGgVSzJoFkdApvSxz3h4uHV9lChoBmgJaA9DCIjYYOEkjRHAlIaUUpRoFUsyaBZHQKb0cnk1dgR1fZQoaAZoCWgPQwg3bcZpiBoSwJSGlFKUaBVLMmgWR0Cm9j6OHWSVdX2UKGgGaAloD0MILXsS2JxDA8CUhpRSlGgVSzJoFkdApvYAPNFBp3V9lChoBmgJaA9DCAPN59ztmgPAlIaUUpRoFUsyaBZHQKb1wqQzUI91fZQoaAZoCWgPQwghrpy9MyoUwJSGlFKUaBVLMmgWR0Cm9YNU4rBkdX2UKGgGaAloD0MI1xh0Qugg6L+UhpRSlGgVSzJoFkdApvdUNx2jf3V9lChoBmgJaA9DCPuxSX7E7w7AlIaUUpRoFUsyaBZHQKb3FdLQHA11fZQoaAZoCWgPQwgu4jsx6yUDwJSGlFKUaBVLMmgWR0Cm9thFVktmdX2UKGgGaAloD0MIgnAFFOop/7+UhpRSlGgVSzJoFkdApvaY5ksjFHV9lChoBmgJaA9DCFTle0YiNAPAlIaUUpRoFUsyaBZHQKb4ZQmeDnN1fZQoaAZoCWgPQwi94qlHGvwDwJSGlFKUaBVLMmgWR0Cm+CaqCHymdX2UKGgGaAloD0MIGcbdIFqr47+UhpRSlGgVSzJoFkdApvfpKaoddXV9lChoBmgJaA9DCE/qy9JObQXAlIaUUpRoFUsyaBZHQKb3qhV2icp1fZQoaAZoCWgPQwinBwWlaGUDwJSGlFKUaBVLMmgWR0Cm+XRCpm29dX2UKGgGaAloD0MIb4Jvmj47BcCUhpRSlGgVSzJoFkdApvk17Uoa1nV9lChoBmgJaA9DCB+7C5QUWAjAlIaUUpRoFUsyaBZHQKb4+FY+0PZ1fZQoaAZoCWgPQwgD6WLTSkEPwJSGlFKUaBVLMmgWR0Cm+LkPDpC8dX2UKGgGaAloD0MIK1CLwcPEFMCUhpRSlGgVSzJoFkdApvskIToMa3V9lChoBmgJaA9DCMWNW8zPTfG/lIaUUpRoFUsyaBZHQKb65tZV4ot1fZQoaAZoCWgPQwheglMfSH4RwJSGlFKUaBVLMmgWR0Cm+qpOerdWdX2UKGgGaAloD0MIPPVIg9va+L+UhpRSlGgVSzJoFkdApvpr8Lron3V9lChoBmgJaA9DCEmD29rCMwbAlIaUUpRoFUsyaBZHQKb8+tDlYEJ1fZQoaAZoCWgPQwhzf/W4b7X5v5SGlFKUaBVLMmgWR0Cm/L2ECeVcdX2UKGgGaAloD0MI6bXZWIn577+UhpRSlGgVSzJoFkdApvyBHAh0Q3V9lChoBmgJaA9DCERMiSR6mQjAlIaUUpRoFUsyaBZHQKb8QvVVghN1fZQoaAZoCWgPQwgcYVERpxP6v5SGlFKUaBVLMmgWR0Cm/s08eS0TdX2UKGgGaAloD0MIdnCwNzGEBcCUhpRSlGgVSzJoFkdApv6PuZ1FIHV9lChoBmgJaA9DCEIKnkKuNAnAlIaUUpRoFUsyaBZHQKb+UxJNCZ51fZQoaAZoCWgPQwj9wcBz76ENwJSGlFKUaBVLMmgWR0Cm/hS+g13udX2UKGgGaAloD0MIPWAeMuVDAcCUhpRSlGgVSzJoFkdApwCgrjHXE3V9lChoBmgJaA9DCLA6cqQzcA3AlIaUUpRoFUsyaBZHQKcAYxD9fkZ1fZQoaAZoCWgPQwgmipC6nd0OwJSGlFKUaBVLMmgWR0CnACZRjz7NdX2UKGgGaAloD0MI81gzMsj9BcCUhpRSlGgVSzJoFkdApv/ny3CsO3V9lChoBmgJaA9DCFHZsKayyAbAlIaUUpRoFUsyaBZHQKcCKC5mRNh1fZQoaAZoCWgPQwiyTL9EvDX2v5SGlFKUaBVLMmgWR0CnAenfEXLvdX2UKGgGaAloD0MIj1IJT+g1AsCUhpRSlGgVSzJoFkdApwGsT6BRRHV9lChoBmgJaA9DCD/EBgsnCQfAlIaUUpRoFUsyaBZHQKcBbOWSlnB1fZQoaAZoCWgPQwjP+SmOA88GwJSGlFKUaBVLMmgWR0CnAzrsSkCWdX2UKGgGaAloD0MIUMdjBirDC8CUhpRSlGgVSzJoFkdApwL8q6OHWXV9lChoBmgJaA9DCH4ZjBGJogTAlIaUUpRoFUsyaBZHQKcCvyNGViZ1fZQoaAZoCWgPQwgnFCLgEIoMwJSGlFKUaBVLMmgWR0CnAn/CZWq+dX2UKGgGaAloD0MI0c5pFmi3EMCUhpRSlGgVSzJoFkdApwRLkKeCkHV9lChoBmgJaA9DCEmERrBx/fq/lIaUUpRoFUsyaBZHQKcEDTUiILx1fZQoaAZoCWgPQwhnt5bJcLwUwJSGlFKUaBVLMmgWR0CnA8+uFHrhdX2UKGgGaAloD0MIWJBmLJp+E8CUhpRSlGgVSzJoFkdApwOQXhwVCXV9lChoBmgJaA9DCP89eO3S1hLAlIaUUpRoFUsyaBZHQKcFX2hZha11fZQoaAZoCWgPQwhzg6EOKxwBwJSGlFKUaBVLMmgWR0CnBSEaESM+dX2UKGgGaAloD0MIQRAgQ8cuA8CUhpRSlGgVSzJoFkdApwTjhYNiIHV9lChoBmgJaA9DCJqUgm4vyQPAlIaUUpRoFUsyaBZHQKcEpC3w1BN1fZQoaAZoCWgPQwgqxY7God4NwJSGlFKUaBVLMmgWR0CnBoRhttQ9dX2UKGgGaAloD0MIJQUWwJQBCcCUhpRSlGgVSzJoFkdApwZGKVII4XV9lChoBmgJaA9DCBlUG5yI/gHAlIaUUpRoFUsyaBZHQKcGCHoHLRt1fZQoaAZoCWgPQwg/cJUnEEYQwJSGlFKUaBVLMmgWR0CnBckona37dX2UKGgGaAloD0MI8DZvnBQmDMCUhpRSlGgVSzJoFkdApwfWGbkOqnV9lChoBmgJaA9DCKiMf59xoQTAlIaUUpRoFUsyaBZHQKcHmGbkOqh1fZQoaAZoCWgPQwioABjPoKEGwJSGlFKUaBVLMmgWR0CnB1z850bMdX2UKGgGaAloD0MILnJPV3cMB8CUhpRSlGgVSzJoFkdApwceVZ9uxnV9lChoBmgJaA9DCLwH6L6cKRbAlIaUUpRoFUsyaBZHQKcJl28qWkd1fZQoaAZoCWgPQwhZMsfyrpoHwJSGlFKUaBVLMmgWR0CnCVoDoyKvdX2UKGgGaAloD0MIINPaNLa3AcCUhpRSlGgVSzJoFkdApwkdinYQKHV9lChoBmgJaA9DCDJxqyAGugrAlIaUUpRoFUsyaBZHQKcI3xPwd811fZQoaAZoCWgPQwjdzVMdcvMIwJSGlFKUaBVLMmgWR0CnC3EGA09AdX2UKGgGaAloD0MIPwEUI0tmCsCUhpRSlGgVSzJoFkdApwsz6zmfXnV9lChoBmgJaA9DCHwpPGh23f+/lIaUUpRoFUsyaBZHQKcK97HAAQx1fZQoaAZoCWgPQwi7RPXWwNb2v5SGlFKUaBVLMmgWR0CnCrlq8DjjdX2UKGgGaAloD0MIkPmAQGeSC8CUhpRSlGgVSzJoFkdApw1URHww03V9lChoBmgJaA9DCNDwZg3etw3AlIaUUpRoFUsyaBZHQKcNFwfhddF1fZQoaAZoCWgPQwhJ88e0Nk3xv5SGlFKUaBVLMmgWR0CnDNpKraM8dX2UKGgGaAloD0MIoIfaNoxiCMCUhpRSlGgVSzJoFkdApwyb8m8dxXV9lChoBmgJaA9DCD3UtmEUxAXAlIaUUpRoFUsyaBZHQKcPNTP0I1N1fZQoaAZoCWgPQwhG7BNAMTL2v5SGlFKUaBVLMmgWR0CnDvgKWszVdX2UKGgGaAloD0MI/G66ZYe4EMCUhpRSlGgVSzJoFkdApw67nLaEjHV9lChoBmgJaA9DCNGuQspPSgLAlIaUUpRoFUsyaBZHQKcOfXHR1HR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (541 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.562918790336698, "std_reward": 1.1208724562519157, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-27T05:32:43.641416"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:501a4e1670dbb8a9e02e431e348af3e805a64fe6ef6d8dd7d60736c7e514c617
3
+ size 2381